The base class for the direct Cholesky factorization of Cholmod.
More...
#include <CholmodSupport.h>
template<typename _MatrixType, int _UpLo, typename Derived>
class Eigen::CholmodBase< _MatrixType, _UpLo, Derived >
The base class for the direct Cholesky factorization of Cholmod.
- See also
- class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
Definition at line 173 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
Enumerator |
---|
ColsAtCompileTime |
|
MaxColsAtCompileTime |
|
Definition at line 186 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename Rhs , typename Dest >
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename RhsDerived , typename DestDerived >
template<typename _MatrixType, int _UpLo, typename Derived>
Performs a symbolic decomposition on the sparsity pattern of matrix.
This function is particularly useful when solving for several problems having the same structure.
- See also
- factorize()
Definition at line 245 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. See the Cholmod user guide for details.
Definition at line 280 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
Computes the sparse Cholesky decomposition of matrix
Definition at line 232 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
- Returns
- the determinant of the underlying matrix from the current factorization
Definition at line 348 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename Stream >
template<typename _MatrixType, int _UpLo, typename Derived>
Performs a numeric decomposition of matrix
The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
- See also
- analyzePattern()
Definition at line 267 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
Reports whether previous computation was successful.
- Returns
Success
if computation was succesful, NumericalIssue
if the matrix.appears to be negative.
Definition at line 225 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
- Returns
- the log determinant of the underlying matrix from the current factorization
Definition at line 355 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
During the numerical factorization, an offset term is added to the diagonal coefficients:
d_ii
= offset + d_ii
The default is offset=0.
- Returns
- a reference to
*this
.
Definition at line 341 of file CholmodSupport.h.
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
template<typename _MatrixType, int _UpLo, typename Derived>
The documentation for this class was generated from the following file: