10 #ifndef EIGEN_UMEYAMA_H 11 #define EIGEN_UMEYAMA_H 21 #ifndef EIGEN_PARSED_BY_DOXYGEN 31 template<
typename MatrixType,
typename OtherMatrixType>
93 template <
typename Derived,
typename OtherDerived>
103 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
111 const Index m = src.rows();
112 const Index n = src.cols();
115 const RealScalar one_over_n = RealScalar(1) /
static_cast<RealScalar
>(n);
118 const VectorType src_mean = src.
rowwise().sum() * one_over_n;
119 const VectorType dst_mean = dst.
rowwise().sum() * one_over_n;
122 const RowMajorMatrixType src_demean = src.
colwise() - src_mean;
123 const RowMajorMatrixType dst_demean = dst.
colwise() - dst_mean;
126 const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
129 const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
134 TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
137 VectorType S = VectorType::Ones(m);
139 if ( svd.
matrixU().determinant() * svd.
matrixV().determinant() < 0 )
143 Rt.block(0,0,m,m).noalias() = svd.
matrixU() * S.asDiagonal() * svd.
matrixV().transpose();
151 Rt.col(m).head(m) = dst_mean;
152 Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
153 Rt.block(0,0,m,m) *= c;
157 Rt.col(m).head(m) = dst_mean;
158 Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean;
166 #endif // EIGEN_UMEYAMA_H
const SingularValuesType & singularValues() const
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
EIGEN_DEVICE_FUNC ConstColwiseReturnType colwise() const
const unsigned int RowMajorBit
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
const MatrixVType & matrixV() const
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama(const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
Returns the transformation between two point sets.
const MatrixUType & matrixU() const
Two-sided Jacobi SVD decomposition of a rectangular matrix.
The matrix class, also used for vectors and row-vectors.
#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a, b)
Base class for all dense matrices, vectors, and expressions.
EIGEN_DEVICE_FUNC ConstRowwiseReturnType rowwise() const