Transform.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 #ifndef EIGEN_TRANSFORM_H
13 #define EIGEN_TRANSFORM_H
14 
15 namespace Eigen {
16 
17 namespace internal {
18 
19 template<typename Transform>
21 {
22  enum
23  {
24  Dim = Transform::Dim,
25  HDim = Transform::HDim,
26  Mode = Transform::Mode,
27  IsProjective = (int(Mode)==int(Projective))
28  };
29 };
30 
31 template< typename TransformType,
32  typename MatrixType,
34  : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
35  : 2,
36  int RhsCols = MatrixType::ColsAtCompileTime>
38 
39 template< typename Other,
40  int Mode,
41  int Options,
42  int Dim,
43  int HDim,
44  int OtherRows=Other::RowsAtCompileTime,
45  int OtherCols=Other::ColsAtCompileTime>
47 
48 template< typename Lhs,
49  typename Rhs,
50  bool AnyProjective =
54 
55 template< typename Other,
56  int Mode,
57  int Options,
58  int Dim,
59  int HDim,
60  int OtherRows=Other::RowsAtCompileTime,
61  int OtherCols=Other::ColsAtCompileTime>
63 
64 template<typename TransformType> struct transform_take_affine_part;
65 
66 template<typename _Scalar, int _Dim, int _Mode, int _Options>
67 struct traits<Transform<_Scalar,_Dim,_Mode,_Options> >
68 {
69  typedef _Scalar Scalar;
71  typedef Dense StorageKind;
72  enum {
73  Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1,
74  RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim,
75  ColsAtCompileTime = Dim1,
76  MaxRowsAtCompileTime = RowsAtCompileTime,
77  MaxColsAtCompileTime = ColsAtCompileTime,
78  Flags = 0
79  };
80 };
81 
82 template<int Mode> struct transform_make_affine;
83 
84 } // end namespace internal
85 
200 template<typename _Scalar, int _Dim, int _Mode, int _Options>
201 class Transform
202 {
203 public:
205  enum {
206  Mode = _Mode,
207  Options = _Options,
208  Dim = _Dim,
209  HDim = _Dim+1,
210  Rows = int(Mode)==(AffineCompact) ? Dim : HDim
211  };
213  typedef _Scalar Scalar;
215  typedef Eigen::Index Index;
216 
219  typedef const MatrixType ConstMatrixType;
227  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
228  MatrixType&,
231  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
232  const MatrixType&,
242 
243  // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
244  enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
247 
248 protected:
249 
250  MatrixType m_matrix;
251 
252 public:
253 
256  EIGEN_DEVICE_FUNC inline Transform()
257  {
258  check_template_params();
260  }
261 
262  EIGEN_DEVICE_FUNC inline Transform(const Transform& other)
263  {
264  check_template_params();
265  m_matrix = other.m_matrix;
266  }
267 
268  EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t)
269  {
270  check_template_params();
271  *this = t;
272  }
273  EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s)
274  {
275  check_template_params();
276  *this = s;
277  }
278  template<typename Derived>
279  EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r)
280  {
281  check_template_params();
282  *this = r;
283  }
284 
285  EIGEN_DEVICE_FUNC inline Transform& operator=(const Transform& other)
286  { m_matrix = other.m_matrix; return *this; }
287 
289 
291  template<typename OtherDerived>
292  EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other)
293  {
295  YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
296 
297  check_template_params();
299  }
300 
302  template<typename OtherDerived>
303  EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other)
304  {
306  YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
307 
309  return *this;
310  }
311 
312  template<int OtherOptions>
313  EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
314  {
315  check_template_params();
316  // only the options change, we can directly copy the matrices
317  m_matrix = other.matrix();
318  }
319 
320  template<int OtherMode,int OtherOptions>
321  EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
322  {
323  check_template_params();
324  // prevent conversions as:
325  // Affine | AffineCompact | Isometry = Projective
327  YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
328 
329  // prevent conversions as:
330  // Isometry = Affine | AffineCompact
331  EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
332  YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
333 
334  enum { ModeIsAffineCompact = Mode == int(AffineCompact),
335  OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
336  };
337 
338  if(ModeIsAffineCompact == OtherModeIsAffineCompact)
339  {
340  // We need the block expression because the code is compiled for all
341  // combinations of transformations and will trigger a compile time error
342  // if one tries to assign the matrices directly
343  m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
344  makeAffine();
345  }
346  else if(OtherModeIsAffineCompact)
347  {
348  typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
350  }
351  else
352  {
353  // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
354  // if OtherMode were Projective, the static assert above would already have caught it.
355  // So the only possibility is that OtherMode == Affine
356  linear() = other.linear();
357  translation() = other.translation();
358  }
359  }
360 
361  template<typename OtherDerived>
362  EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other)
363  {
364  check_template_params();
365  other.evalTo(*this);
366  }
367 
368  template<typename OtherDerived>
369  EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other)
370  {
371  other.evalTo(*this);
372  return *this;
373  }
374 
375  #ifdef EIGEN_QT_SUPPORT
376  inline Transform(const QMatrix& other);
377  inline Transform& operator=(const QMatrix& other);
378  inline QMatrix toQMatrix(void) const;
379  inline Transform(const QTransform& other);
380  inline Transform& operator=(const QTransform& other);
381  inline QTransform toQTransform(void) const;
382  #endif
383 
384  EIGEN_DEVICE_FUNC Index rows() const { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); }
385  EIGEN_DEVICE_FUNC Index cols() const { return m_matrix.cols(); }
386 
389  EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
392  EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
393 
395  EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; }
397  EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; }
398 
400  EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
402  EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
403 
405  EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
407  EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); }
408 
410  EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
412  EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
413 
438  // note: this function is defined here because some compilers cannot find the respective declaration
439  template<typename OtherDerived>
443 
451  template<typename OtherDerived> friend
455 
462  template<typename DiagonalDerived>
463  EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType
465  {
466  TransformTimeDiagonalReturnType res(*this);
467  res.linearExt() *= b;
468  return res;
469  }
470 
477  template<typename DiagonalDerived>
478  EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType
480  {
481  TransformTimeDiagonalReturnType res;
482  res.linear().noalias() = a*b.linear();
483  res.translation().noalias() = a*b.translation();
484  if (Mode!=int(AffineCompact))
485  res.matrix().row(Dim) = b.matrix().row(Dim);
486  return res;
487  }
488 
489  template<typename OtherDerived>
490  EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
491 
493  EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const
494  {
496  }
497 
498  #if EIGEN_COMP_ICC
499 private:
500  // this intermediate structure permits to workaround a bug in ICC 11:
501  // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
502  // (const Eigen::Transform<double, 3, 2, 0> &) const"
503  // (the meaning of a name may have changed since the template declaration -- the type of the template is:
504  // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
505  // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
506  //
507  template<int OtherMode,int OtherOptions> struct icc_11_workaround
508  {
510  typedef typename ProductType::ResultType ResultType;
511  };
512 
513 public:
515  template<int OtherMode,int OtherOptions>
516  inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
518  {
519  typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
520  return ProductType::run(*this,other);
521  }
522  #else
523 
524  template<int OtherMode,int OtherOptions>
527  {
529  }
530  #endif
531 
533  EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); }
534 
539  EIGEN_DEVICE_FUNC static const Transform Identity()
540  {
541  return Transform(MatrixType::Identity());
542  }
543 
544  template<typename OtherDerived>
545  EIGEN_DEVICE_FUNC
546  inline Transform& scale(const MatrixBase<OtherDerived> &other);
547 
548  template<typename OtherDerived>
549  EIGEN_DEVICE_FUNC
550  inline Transform& prescale(const MatrixBase<OtherDerived> &other);
551 
552  EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s);
553  EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s);
554 
555  template<typename OtherDerived>
556  EIGEN_DEVICE_FUNC
557  inline Transform& translate(const MatrixBase<OtherDerived> &other);
558 
559  template<typename OtherDerived>
560  EIGEN_DEVICE_FUNC
561  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
562 
563  template<typename RotationType>
564  EIGEN_DEVICE_FUNC
565  inline Transform& rotate(const RotationType& rotation);
566 
567  template<typename RotationType>
568  EIGEN_DEVICE_FUNC
569  inline Transform& prerotate(const RotationType& rotation);
570 
571  EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy);
572  EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy);
573 
574  EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t);
575 
576  EIGEN_DEVICE_FUNC
577  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
578 
579  EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const;
580 
581  EIGEN_DEVICE_FUNC
582  inline Transform& operator=(const UniformScaling<Scalar>& t);
583 
584  EIGEN_DEVICE_FUNC
585  inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
586 
587  EIGEN_DEVICE_FUNC
588  inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const
589  {
590  TransformTimeDiagonalReturnType res = *this;
591  res.scale(s.factor());
592  return res;
593  }
594 
595  EIGEN_DEVICE_FUNC
596  inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linearExt() *= s; return *this; }
597 
598  template<typename Derived>
599  EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived,Dim>& r);
600  template<typename Derived>
601  EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
602  template<typename Derived>
603  EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
604 
605  EIGEN_DEVICE_FUNC const LinearMatrixType rotation() const;
606  template<typename RotationMatrixType, typename ScalingMatrixType>
607  EIGEN_DEVICE_FUNC
608  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
609  template<typename ScalingMatrixType, typename RotationMatrixType>
610  EIGEN_DEVICE_FUNC
611  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
612 
613  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
614  EIGEN_DEVICE_FUNC
615  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
616  const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
617 
618  EIGEN_DEVICE_FUNC
619  inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
620 
622  EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); }
624  EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); }
625 
631  template<typename NewScalarType>
634 
636  template<typename OtherScalarType>
637  EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
638  {
639  check_template_params();
640  m_matrix = other.matrix().template cast<Scalar>();
641  }
642 
647  EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
648  { return m_matrix.isApprox(other.m_matrix, prec); }
649 
652  EIGEN_DEVICE_FUNC void makeAffine()
653  {
655  }
656 
662  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
668  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
669 
675  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
681  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
682 
683 
684  #ifdef EIGEN_TRANSFORM_PLUGIN
685  #include EIGEN_TRANSFORM_PLUGIN
686  #endif
687 
688 protected:
689  #ifndef EIGEN_PARSED_BY_DOXYGEN
690  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params()
691  {
692  EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
693  }
694  #endif
695 
696 };
697 
706 
715 
724 
733 
734 /**************************
735 *** Optional QT support ***
736 **************************/
737 
738 #ifdef EIGEN_QT_SUPPORT
739 
743 template<typename Scalar, int Dim, int Mode,int Options>
745 {
746  check_template_params();
747  *this = other;
748 }
749 
754 template<typename Scalar, int Dim, int Mode,int Options>
756 {
757  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
758  if (Mode == int(AffineCompact))
759  m_matrix << other.m11(), other.m21(), other.dx(),
760  other.m12(), other.m22(), other.dy();
761  else
762  m_matrix << other.m11(), other.m21(), other.dx(),
763  other.m12(), other.m22(), other.dy(),
764  0, 0, 1;
765  return *this;
766 }
767 
774 template<typename Scalar, int Dim, int Mode, int Options>
776 {
777  check_template_params();
778  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
779  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
780  m_matrix.coeff(0,1), m_matrix.coeff(1,1),
781  m_matrix.coeff(0,2), m_matrix.coeff(1,2));
782 }
783 
788 template<typename Scalar, int Dim, int Mode,int Options>
789 Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
790 {
791  check_template_params();
792  *this = other;
793 }
794 
799 template<typename Scalar, int Dim, int Mode, int Options>
801 {
802  check_template_params();
803  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
804  if (Mode == int(AffineCompact))
805  m_matrix << other.m11(), other.m21(), other.dx(),
806  other.m12(), other.m22(), other.dy();
807  else
808  m_matrix << other.m11(), other.m21(), other.dx(),
809  other.m12(), other.m22(), other.dy(),
810  other.m13(), other.m23(), other.m33();
811  return *this;
812 }
813 
818 template<typename Scalar, int Dim, int Mode, int Options>
820 {
821  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
822  if (Mode == int(AffineCompact))
823  return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
824  m_matrix.coeff(0,1), m_matrix.coeff(1,1),
825  m_matrix.coeff(0,2), m_matrix.coeff(1,2));
826  else
827  return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
828  m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
829  m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
830 }
831 #endif
832 
833 /*********************
834 *** Procedural API ***
835 *********************/
836 
841 template<typename Scalar, int Dim, int Mode, int Options>
842 template<typename OtherDerived>
843 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
845 {
847  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
848  linearExt().noalias() = (linearExt() * other.asDiagonal());
849  return *this;
850 }
851 
856 template<typename Scalar, int Dim, int Mode, int Options>
858 {
859  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
860  linearExt() *= s;
861  return *this;
862 }
863 
868 template<typename Scalar, int Dim, int Mode, int Options>
869 template<typename OtherDerived>
870 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
872 {
874  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
875  affine().noalias() = (other.asDiagonal() * affine());
876  return *this;
877 }
878 
883 template<typename Scalar, int Dim, int Mode, int Options>
885 {
886  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
887  m_matrix.template topRows<Dim>() *= s;
888  return *this;
889 }
890 
895 template<typename Scalar, int Dim, int Mode, int Options>
896 template<typename OtherDerived>
897 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
899 {
901  translationExt() += linearExt() * other;
902  return *this;
903 }
904 
909 template<typename Scalar, int Dim, int Mode, int Options>
910 template<typename OtherDerived>
911 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
913 {
915  if(int(Mode)==int(Projective))
916  affine() += other * m_matrix.row(Dim);
917  else
918  translation() += other;
919  return *this;
920 }
921 
939 template<typename Scalar, int Dim, int Mode, int Options>
940 template<typename RotationType>
941 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
942 Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
943 {
944  linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
945  return *this;
946 }
947 
955 template<typename Scalar, int Dim, int Mode, int Options>
956 template<typename RotationType>
957 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
959 {
960  m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
961  * m_matrix.template block<Dim,HDim>(0,0);
962  return *this;
963 }
964 
970 template<typename Scalar, int Dim, int Mode, int Options>
971 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
972 Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
973 {
974  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
975  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
976  VectorType tmp = linear().col(0)*sy + linear().col(1);
977  linear() << linear().col(0) + linear().col(1)*sx, tmp;
978  return *this;
979 }
980 
986 template<typename Scalar, int Dim, int Mode, int Options>
987 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
988 Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
989 {
990  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
991  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
992  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
993  return *this;
994 }
995 
996 /******************************************************
997 *** Scaling, Translation and Rotation compatibility ***
998 ******************************************************/
999 
1000 template<typename Scalar, int Dim, int Mode, int Options>
1002 {
1003  linear().setIdentity();
1004  translation() = t.vector();
1005  makeAffine();
1006  return *this;
1007 }
1008 
1009 template<typename Scalar, int Dim, int Mode, int Options>
1010 EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
1011 {
1012  Transform res = *this;
1013  res.translate(t.vector());
1014  return res;
1015 }
1016 
1017 template<typename Scalar, int Dim, int Mode, int Options>
1019 {
1020  m_matrix.setZero();
1021  linear().diagonal().fill(s.factor());
1022  makeAffine();
1023  return *this;
1024 }
1025 
1026 template<typename Scalar, int Dim, int Mode, int Options>
1027 template<typename Derived>
1029 {
1030  linear() = internal::toRotationMatrix<Scalar,Dim>(r);
1031  translation().setZero();
1032  makeAffine();
1033  return *this;
1034 }
1035 
1036 template<typename Scalar, int Dim, int Mode, int Options>
1037 template<typename Derived>
1039 {
1040  Transform res = *this;
1041  res.rotate(r.derived());
1042  return res;
1043 }
1044 
1045 /************************
1046 *** Special functions ***
1047 ************************/
1048 
1056 template<typename Scalar, int Dim, int Mode, int Options>
1057 EIGEN_DEVICE_FUNC const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
1059 {
1060  LinearMatrixType result;
1061  computeRotationScaling(&result, (LinearMatrixType*)0);
1062  return result;
1063 }
1064 
1065 
1077 template<typename Scalar, int Dim, int Mode, int Options>
1078 template<typename RotationMatrixType, typename ScalingMatrixType>
1079 EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
1080 {
1082 
1083  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
1084  VectorType sv(svd.singularValues());
1085  sv.coeffRef(0) *= x;
1086  if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint());
1087  if(rotation)
1088  {
1089  LinearMatrixType m(svd.matrixU());
1090  m.col(0) /= x;
1091  rotation->lazyAssign(m * svd.matrixV().adjoint());
1092  }
1093 }
1094 
1106 template<typename Scalar, int Dim, int Mode, int Options>
1107 template<typename ScalingMatrixType, typename RotationMatrixType>
1108 EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
1109 {
1111 
1112  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
1113  VectorType sv(svd.singularValues());
1114  sv.coeffRef(0) *= x;
1115  if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint());
1116  if(rotation)
1117  {
1118  LinearMatrixType m(svd.matrixU());
1119  m.col(0) /= x;
1120  rotation->lazyAssign(m * svd.matrixV().adjoint());
1121  }
1122 }
1123 
1127 template<typename Scalar, int Dim, int Mode, int Options>
1128 template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
1129 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
1131  const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
1132 {
1133  linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
1134  linear() *= scale.asDiagonal();
1135  translation() = position;
1136  makeAffine();
1137  return *this;
1138 }
1139 
1140 namespace internal {
1141 
1142 template<int Mode>
1143 struct transform_make_affine
1144 {
1145  template<typename MatrixType>
1146  EIGEN_DEVICE_FUNC static void run(MatrixType &mat)
1147  {
1148  static const int Dim = MatrixType::ColsAtCompileTime-1;
1149  mat.template block<1,Dim>(Dim,0).setZero();
1150  mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1);
1151  }
1152 };
1153 
1154 template<>
1156 {
1157  template<typename MatrixType> EIGEN_DEVICE_FUNC static void run(MatrixType &) { }
1158 };
1159 
1160 // selector needed to avoid taking the inverse of a 3x4 matrix
1161 template<typename TransformType, int Mode=TransformType::Mode>
1163 {
1164  EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&)
1165  {}
1166 };
1167 
1168 template<typename TransformType>
1170 {
1171  EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res)
1172  {
1173  res.matrix() = m.matrix().inverse();
1174  }
1175 };
1176 
1177 } // end namespace internal
1178 
1179 
1200 template<typename Scalar, int Dim, int Mode, int Options>
1201 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>
1203 {
1204  Transform res;
1205  if (hint == Projective)
1206  {
1208  }
1209  else
1210  {
1211  if (hint == Isometry)
1212  {
1213  res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
1214  }
1215  else if(hint&Affine)
1216  {
1217  res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
1218  }
1219  else
1220  {
1221  eigen_assert(false && "Invalid transform traits in Transform::Inverse");
1222  }
1223  // translation and remaining parts
1224  res.matrix().template topRightCorner<Dim,1>()
1225  = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
1226  res.makeAffine(); // we do need this, because in the beginning res is uninitialized
1227  }
1228  return res;
1229 }
1230 
1231 namespace internal {
1232 
1233 /*****************************************************
1234 *** Specializations of take affine part ***
1235 *****************************************************/
1236 
1237 template<typename TransformType> struct transform_take_affine_part {
1238  typedef typename TransformType::MatrixType MatrixType;
1239  typedef typename TransformType::AffinePart AffinePart;
1240  typedef typename TransformType::ConstAffinePart ConstAffinePart;
1241  static inline AffinePart run(MatrixType& m)
1242  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1243  static inline ConstAffinePart run(const MatrixType& m)
1244  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1245 };
1246 
1247 template<typename Scalar, int Dim, int Options>
1250  static inline MatrixType& run(MatrixType& m) { return m; }
1251  static inline const MatrixType& run(const MatrixType& m) { return m; }
1252 };
1253 
1254 /*****************************************************
1255 *** Specializations of construct from matrix ***
1256 *****************************************************/
1257 
1258 template<typename Other, int Mode, int Options, int Dim, int HDim>
1259 struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
1260 {
1261  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1262  {
1263  transform->linear() = other;
1264  transform->translation().setZero();
1265  transform->makeAffine();
1266  }
1267 };
1268 
1269 template<typename Other, int Mode, int Options, int Dim, int HDim>
1270 struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
1271 {
1272  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1273  {
1274  transform->affine() = other;
1275  transform->makeAffine();
1276  }
1277 };
1278 
1279 template<typename Other, int Mode, int Options, int Dim, int HDim>
1280 struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
1281 {
1282  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1283  { transform->matrix() = other; }
1284 };
1285 
1286 template<typename Other, int Options, int Dim, int HDim>
1288 {
1289  static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
1290  { transform->matrix() = other.template block<Dim,HDim>(0,0); }
1291 };
1292 
1293 /**********************************************************
1294 *** Specializations of operator* with rhs EigenBase ***
1295 **********************************************************/
1296 
1297 template<int LhsMode,int RhsMode>
1299 {
1300  enum
1301  {
1302  Mode =
1303  (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective :
1304  (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine :
1305  (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
1306  (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective
1307  };
1308 };
1309 
1310 template< typename TransformType, typename MatrixType, int RhsCols>
1311 struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols>
1312 {
1313  typedef typename MatrixType::PlainObject ResultType;
1314 
1315  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1316  {
1317  return T.matrix() * other;
1318  }
1319 };
1320 
1321 template< typename TransformType, typename MatrixType, int RhsCols>
1322 struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols>
1323 {
1324  enum {
1325  Dim = TransformType::Dim,
1326  HDim = TransformType::HDim,
1327  OtherRows = MatrixType::RowsAtCompileTime,
1328  OtherCols = MatrixType::ColsAtCompileTime
1329  };
1330 
1331  typedef typename MatrixType::PlainObject ResultType;
1332 
1333  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1334  {
1335  EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1336 
1338 
1339  ResultType res(other.rows(),other.cols());
1340  TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
1341  res.row(OtherRows-1) = other.row(OtherRows-1);
1342 
1343  return res;
1344  }
1345 };
1346 
1347 template< typename TransformType, typename MatrixType, int RhsCols>
1348 struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols>
1349 {
1350  enum {
1351  Dim = TransformType::Dim,
1352  HDim = TransformType::HDim,
1353  OtherRows = MatrixType::RowsAtCompileTime,
1354  OtherCols = MatrixType::ColsAtCompileTime
1355  };
1356 
1357  typedef typename MatrixType::PlainObject ResultType;
1358 
1359  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1360  {
1361  EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1362 
1363  typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
1364  ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
1365  TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
1366 
1367  return res;
1368  }
1369 };
1370 
1371 template< typename TransformType, typename MatrixType >
1372 struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim
1373 {
1374  typedef typename TransformType::MatrixType TransformMatrix;
1375  enum {
1376  Dim = TransformType::Dim,
1377  HDim = TransformType::HDim,
1378  OtherRows = MatrixType::RowsAtCompileTime,
1379  WorkingRows = EIGEN_PLAIN_ENUM_MIN(TransformMatrix::RowsAtCompileTime,HDim)
1380  };
1381 
1382  typedef typename MatrixType::PlainObject ResultType;
1383 
1384  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1385  {
1386  EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1387 
1389  rhs.template head<Dim>() = other; rhs[Dim] = typename ResultType::Scalar(1);
1391  return res.template head<Dim>();
1392  }
1393 };
1394 
1395 /**********************************************************
1396 *** Specializations of operator* with lhs EigenBase ***
1397 **********************************************************/
1398 
1399 // generic HDim x HDim matrix * T => Projective
1400 template<typename Other,int Mode, int Options, int Dim, int HDim>
1401 struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
1402 {
1406  static ResultType run(const Other& other,const TransformType& tr)
1407  { return ResultType(other * tr.matrix()); }
1408 };
1409 
1410 // generic HDim x HDim matrix * AffineCompact => Projective
1411 template<typename Other, int Options, int Dim, int HDim>
1413 {
1417  static ResultType run(const Other& other,const TransformType& tr)
1418  {
1419  ResultType res;
1420  res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
1421  res.matrix().col(Dim) += other.col(Dim);
1422  return res;
1423  }
1424 };
1425 
1426 // affine matrix * T
1427 template<typename Other,int Mode, int Options, int Dim, int HDim>
1428 struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
1429 {
1432  typedef TransformType ResultType;
1433  static ResultType run(const Other& other,const TransformType& tr)
1434  {
1435  ResultType res;
1436  res.affine().noalias() = other * tr.matrix();
1437  res.matrix().row(Dim) = tr.matrix().row(Dim);
1438  return res;
1439  }
1440 };
1441 
1442 // affine matrix * AffineCompact
1443 template<typename Other, int Options, int Dim, int HDim>
1445 {
1448  typedef TransformType ResultType;
1449  static ResultType run(const Other& other,const TransformType& tr)
1450  {
1451  ResultType res;
1452  res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
1453  res.translation() += other.col(Dim);
1454  return res;
1455  }
1456 };
1457 
1458 // linear matrix * T
1459 template<typename Other,int Mode, int Options, int Dim, int HDim>
1460 struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
1461 {
1464  typedef TransformType ResultType;
1465  static ResultType run(const Other& other, const TransformType& tr)
1466  {
1467  TransformType res;
1468  if(Mode!=int(AffineCompact))
1469  res.matrix().row(Dim) = tr.matrix().row(Dim);
1470  res.matrix().template topRows<Dim>().noalias()
1471  = other * tr.matrix().template topRows<Dim>();
1472  return res;
1473  }
1474 };
1475 
1476 /**********************************************************
1477 *** Specializations of operator* with another Transform ***
1478 **********************************************************/
1479 
1480 template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1481 struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
1482 {
1487  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1488  {
1489  ResultType res;
1490  res.linear() = lhs.linear() * rhs.linear();
1491  res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
1492  res.makeAffine();
1493  return res;
1494  }
1495 };
1496 
1497 template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1498 struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
1499 {
1503  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1504  {
1505  return ResultType( lhs.matrix() * rhs.matrix() );
1506  }
1507 };
1508 
1509 template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1510 struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
1511 {
1515  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1516  {
1517  ResultType res;
1518  res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
1519  res.matrix().row(Dim) = rhs.matrix().row(Dim);
1520  return res;
1521  }
1522 };
1523 
1524 template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1525 struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
1526 {
1530  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1531  {
1532  ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
1533  res.matrix().col(Dim) += lhs.matrix().col(Dim);
1534  return res;
1535  }
1536 };
1537 
1538 } // end namespace internal
1539 
1540 } // end namespace Eigen
1541 
1542 #endif // EIGEN_TRANSFORM_H
EIGEN_DEVICE_FUNC RotationMatrixType toRotationMatrix() const
Definition: RotationBase.h:45
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const
static EIGEN_DEVICE_FUNC const Transform Identity()
Returns an identity transformation.
Definition: Transform.h:539
Transform< typename Other::Scalar, Dim, Mode, Options > TransformType
Definition: Transform.h:1462
EIGEN_DEVICE_FUNC Transform & operator*=(const DiagonalMatrix< Scalar, Dim > &s)
Definition: Transform.h:596
EIGEN_DEVICE_FUNC Transform & preshear(const Scalar &sx, const Scalar &sy)
Definition: Transform.h:988
TransformType::AffinePart AffinePart
Definition: Transform.h:1239
const MatrixType ConstMatrixType
Definition: Transform.h:219
#define EIGEN_STRONG_INLINE
Definition: Macros.h:493
EIGEN_DEVICE_FUNC Derived & setZero(Index size)
Transform< float, 3, Affine > Affine3f
Definition: Transform.h:710
Transform< double, 2, AffineCompact > AffineCompact2d
Definition: Transform.h:721
EIGEN_DEVICE_FUNC void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
Definition: Transform.h:1079
Block< MatrixType, Dim, Dim, int(Mode)==(AffineCompact)&&(Options &RowMajor)==0 > LinearPart
Definition: Transform.h:223
EIGEN_DEVICE_FUNC const LinearMatrixType rotation() const
Definition: Transform.h:1058
const SingularValuesType & singularValues() const
Definition: SVDBase.h:111
TransformType::MatrixType MatrixType
Definition: Transform.h:1238
static ResultType run(const Other &other, const TransformType &tr)
Definition: Transform.h:1406
static void run(Transform< typename Other::Scalar, Dim, Mode, Options > *transform, const Other &other)
Definition: Transform.h:1261
EIGEN_DEVICE_FUNC const Block< MatrixType, int(Mode)==int(Projective)?HDim:Dim, Dim > linearExt() const
Definition: Transform.h:667
EIGEN_DEVICE_FUNC Transform(const UniformScaling< Scalar > &s)
Definition: Transform.h:273
Eigen::Index Index
Definition: Transform.h:215
_Scalar Scalar
Definition: Transform.h:211
static EIGEN_DEVICE_FUNC void run(const TransformType &m, TransformType &res)
Definition: Transform.h:1171
EIGEN_DEVICE_FUNC Transform(const Transform< Scalar, Dim, Mode, OtherOptions > &other)
Definition: Transform.h:313
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar * data() const
EIGEN_DEVICE_FUNC void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
Definition: Transform.h:1108
XmlRpcServer s
static EIGEN_STRONG_INLINE ResultType run(const TransformType &T, const MatrixType &other)
Definition: Transform.h:1333
Represents a diagonal matrix with its storage.
Transform< typename Other::Scalar, Dim, AffineCompact, Options > TransformType
Definition: Transform.h:1414
const Scalar & factor() const
EIGEN_DEVICE_FUNC Transform & operator*=(const EigenBase< OtherDerived > &other)
Definition: Transform.h:490
Definition: LDLT.h:16
EIGEN_DEVICE_FUNC const VectorType & vector() const
Definition: Translation.h:87
EIGEN_DEVICE_FUNC MatrixType & matrix()
Definition: Transform.h:397
EIGEN_DEVICE_FUNC void evalTo(Dest &dst) const
Definition: ReturnByValue.h:61
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:150
Transform< typename Other::Scalar, Dim, AffineCompact, Options > TransformType
Definition: Transform.h:1446
internal::transform_take_affine_part< Transform > take_affine_part
Definition: Transform.h:288
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:122
EIGEN_DEVICE_FUNC Transform & operator=(const ReturnByValue< OtherDerived > &other)
Definition: Transform.h:369
EIGEN_DEVICE_FUNC LinearPart linear()
Definition: Transform.h:402
EIGEN_DEVICE_FUNC Transform & prerotate(const RotationType &rotation)
EIGEN_DEVICE_FUNC ConstTranslationPart translation() const
Definition: Transform.h:410
Transform< Scalar, Dim, AffineCompact, Options >::MatrixType MatrixType
Definition: Transform.h:1249
const unsigned int RowMajorBit
Definition: Constants.h:61
EIGEN_DEVICE_FUNC Transform()
Definition: Transform.h:256
#define EIGEN_IMPLIES(a, b)
Definition: Macros.h:899
EIGEN_DEVICE_FUNC Transform & scale(const MatrixBase< OtherDerived > &other)
EIGEN_DEVICE_FUNC Index cols() const
Definition: Transform.h:385
EIGEN_DEVICE_FUNC Transform & operator*=(const TranslationType &t)
Definition: Transform.h:577
EIGEN_DEVICE_FUNC internal::cast_return_type< Transform, Transform< NewScalarType, Dim, Mode, Options > >::type cast() const
Definition: Transform.h:632
Matrix< Scalar, Dim, Dim, Options > LinearMatrixType
Definition: Transform.h:221
static EIGEN_STRONG_INLINE ResultType run(const TransformType &T, const MatrixType &other)
Definition: Transform.h:1315
EIGEN_DEVICE_FUNC Transform & rotate(const RotationType &rotation)
Matrix< Scalar, Dim, 1 > VectorType
Definition: Transform.h:235
static void run(Transform< typename Other::Scalar, Dim, Mode, Options > *transform, const Other &other)
Definition: Transform.h:1272
EIGEN_DEVICE_FUNC Transform(const EigenBase< OtherDerived > &other)
Definition: Transform.h:292
EIGEN_DEVICE_FUNC Transform & operator*=(const RotationBase< Derived, Dim > &r)
Definition: Transform.h:601
static EIGEN_DEVICE_FUNC void run(MatrixType &)
Definition: Transform.h:1157
EIGEN_DEVICE_FUNC Transform & operator=(const Transform &other)
Definition: Transform.h:285
void setZero()
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void check_template_params()
Definition: Transform.h:690
Represents a translation transformation.
Transform< double, 2, Projective > Projective2d
Definition: Transform.h:730
Transform< float, 2, AffineCompact > AffineCompact2f
Definition: Transform.h:717
static ResultType run(const Other &other, const TransformType &tr)
Definition: Transform.h:1433
EIGEN_DEVICE_FUNC ColXpr col(Index i)
This is the const version of col().
Definition: BlockMethods.h:838
internal::conditional< int(Mode)==int(AffineCompact), MatrixType &, Block< MatrixType, Dim, HDim > >::type AffinePart
Definition: Transform.h:229
EIGEN_DEVICE_FUNC Transform & shear(const Scalar &sx, const Scalar &sy)
Definition: Transform.h:972
EIGEN_DEVICE_FUNC Transform & translate(const MatrixBase< OtherDerived > &other)
EIGEN_DEVICE_FUNC bool isApprox(const Transform &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const
Definition: Transform.h:647
EIGEN_DEVICE_FUNC Transform & operator*=(const UniformScaling< Scalar > &s)
Definition: Transform.h:585
Transform< typename Other::Scalar, Dim, Projective, Options > ResultType
Definition: Transform.h:1405
static EIGEN_STRONG_INLINE ResultType run(const TransformType &T, const MatrixType &other)
Definition: Transform.h:1384
EIGEN_DEVICE_FUNC Transform & pretranslate(const MatrixBase< OtherDerived > &other)
TransformTraits
Definition: Constants.h:445
EIGEN_DEVICE_FUNC const MatrixType & matrix() const
Definition: Transform.h:395
Transform< double, 3, Affine > Affine3d
Definition: Transform.h:714
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
#define eigen_assert(x)
Definition: Macros.h:577
EIGEN_DEVICE_FUNC Transform(const TranslationType &t)
Definition: Transform.h:268
EIGEN_DEVICE_FUNC Transform & prescale(const MatrixBase< OtherDerived > &other)
Eigen::Index StorageIndex
Definition: Transform.h:214
EIGEN_DEVICE_FUNC RowXpr row(Index i)
This is the const version of row(). */.
Definition: BlockMethods.h:859
Expression of the multiple replication of a matrix or vector.
Definition: Replicate.h:61
EIGEN_DEVICE_FUNC void setIdentity()
Definition: Transform.h:533
EIGEN_DEVICE_FUNC AffinePart affine()
Definition: Transform.h:407
Common base class for compact rotation representations.
Transform< typename Other::Scalar, Dim, Mode, Options > TransformType
Definition: Transform.h:1430
EIGEN_DEVICE_FUNC Transform & operator=(const EigenBase< OtherDerived > &other)
Definition: Transform.h:303
Transform< double, 3, Isometry > Isometry3d
Definition: Transform.h:705
MatrixType m_matrix
Definition: Transform.h:250
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar, _Dim==Dynamic?Dynamic:(_Dim+1)*(_Dim+1)) enum
Definition: Transform.h:204
static ResultType run(const Other &other, const TransformType &tr)
Definition: Transform.h:1465
EIGEN_DEVICE_FUNC Block< MatrixType, int(Mode)==int(Projective)?HDim:Dim, 1 > translationExt()
Definition: Transform.h:674
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorUInt128< uint64_t, uint64_t > operator*(const TensorUInt128< HL, LL > &lhs, const TensorUInt128< HR, LR > &rhs)
EIGEN_DEVICE_FUNC ConstLinearPart linear() const
Definition: Transform.h:400
static AffinePart run(MatrixType &m)
Definition: Transform.h:1241
Transform< float, 2, Projective > Projective2f
Definition: Transform.h:726
static EIGEN_DEVICE_FUNC void run(MatrixType &mat)
Definition: Transform.h:1146
EIGEN_DEVICE_FUNC Transform(const Transform &other)
Definition: Transform.h:262
static EIGEN_DEVICE_FUNC void run(const TransformType &, TransformType &)
Definition: Transform.h:1164
const Block< ConstMatrixType, Dim, Dim, int(Mode)==(AffineCompact)&&(Options &RowMajor)==0 > ConstLinearPart
Definition: Transform.h:225
EIGEN_DEVICE_FUNC Transform & fromPositionOrientationScale(const MatrixBase< PositionDerived > &position, const OrientationType &orientation, const MatrixBase< ScaleDerived > &scale)
Transform< float, 3, Projective > Projective3f
Definition: Transform.h:728
static void run(Transform< typename Other::Scalar, Dim, Mode, Options > *transform, const Other &other)
Definition: Transform.h:1282
EIGEN_DEVICE_FUNC const Derived & derived() const
Definition: RotationBase.h:41
EIGEN_DEVICE_FUNC const Scalar * data() const
Definition: Transform.h:622
EIGEN_DEVICE_FUNC TransformTimeDiagonalReturnType operator*(const UniformScaling< Scalar > &s) const
Definition: Transform.h:588
Transform< Scalar, Dim, TransformTimeDiagonalMode > TransformTimeDiagonalReturnType
Definition: Transform.h:246
EIGEN_DEVICE_FUNC Index rows() const
Definition: Transform.h:384
Transform< float, 3, AffineCompact > AffineCompact3f
Definition: Transform.h:719
EIGEN_DEVICE_FUNC Transform(const Transform< OtherScalarType, Dim, Mode, Options > &other)
Definition: Transform.h:637
Transform< double, 3, AffineCompact > AffineCompact3d
Definition: Transform.h:723
internal::make_proper_matrix_type< Scalar, Rows, HDim, Options >::type MatrixType
Definition: Transform.h:217
Transform< float, 2, Affine > Affine2f
Definition: Transform.h:708
EIGEN_DEVICE_FUNC Transform(const ReturnByValue< OtherDerived > &other)
Definition: Transform.h:362
TransformType::ConstAffinePart ConstAffinePart
Definition: Transform.h:1240
EIGEN_DEVICE_FUNC Scalar * data()
Definition: Transform.h:624
Transform< float, 3, Isometry > Isometry3f
Definition: Transform.h:701
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
Translation< Scalar, Dim > TranslationType
Definition: Transform.h:241
#define EIGEN_PLAIN_ENUM_MIN(a, b)
Definition: Macros.h:872
Transform< double, 2, Affine > Affine2d
Definition: Transform.h:712
static void run(Transform< typename Other::Scalar, Dim, AffineCompact, Options > *transform, const Other &other)
Definition: Transform.h:1289
Transform< double, 2, Isometry > Isometry2d
Definition: Transform.h:703
TFSIMD_FORCE_INLINE Vector3 rotate(const Vector3 &wAxis, const tfScalar angle) const
EIGEN_DEVICE_FUNC ConstAffinePart affine() const
Definition: Transform.h:405
Two-sided Jacobi SVD decomposition of a rectangular matrix.
static EIGEN_STRONG_INLINE ResultType run(const TransformType &T, const MatrixType &other)
Definition: Transform.h:1359
static ConstAffinePart run(const MatrixType &m)
Definition: Transform.h:1243
const int Dynamic
Definition: Constants.h:21
EIGEN_DEVICE_FUNC Transform(const RotationBase< Derived, Dim > &r)
Definition: Transform.h:279
EIGEN_DEVICE_FUNC const DiagonalWrapper< const Derived > asDiagonal() const
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
EIGEN_DEVICE_FUNC const Block< MatrixType, int(Mode)==int(Projective)?HDim:Dim, 1 > translationExt() const
Definition: Transform.h:680
void run(Expr &expr, Dev &dev)
Definition: TensorSyclRun.h:33
EIGEN_DEVICE_FUNC const Scalar & b
EIGEN_DEVICE_FUNC TranslationPart translation()
Definition: Transform.h:412
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:45
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
EIGEN_DEVICE_FUNC const InverseReturnType inverse() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar & coeff(Index rowId, Index colId) const
Represents an homogeneous transformation in a N dimensional space.
EIGEN_DEVICE_FUNC Transform inverse(TransformTraits traits=(TransformTraits) Mode) const
Definition: Transform.h:1202
EIGEN_DEVICE_FUNC Transform(const Transform< Scalar, Dim, OtherMode, OtherOptions > &other)
Definition: Transform.h:321
Transform< float, 2, Isometry > Isometry2f
Definition: Transform.h:699
Transform< double, 3, Projective > Projective3d
Definition: Transform.h:732
#define EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(TYPE, SIZE)
Definition: StaticAssert.h:152
internal::conditional< int(Mode)==int(AffineCompact), const MatrixType &, const Block< const MatrixType, Dim, HDim > >::type ConstAffinePart
Definition: Transform.h:233
EIGEN_DEVICE_FUNC Block< MatrixType, int(Mode)==int(Projective)?HDim:Dim, Dim > linearExt()
Definition: Transform.h:661
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const internal::transform_right_product_impl< Transform, OtherDerived >::ResultType operator*(const EigenBase< OtherDerived > &other) const
Definition: Transform.h:441
EIGEN_DEVICE_FUNC void makeAffine()
Definition: Transform.h:652


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:09:40