TensorVolumePatch.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 
4 #ifndef EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
5 #define EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
6 
7 namespace Eigen {
8 
24 namespace internal {
25 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
26 struct traits<TensorVolumePatchOp<Planes, Rows, Cols, XprType> > : public traits<XprType>
27 {
30  typedef typename XprTraits::StorageKind StorageKind;
31  typedef typename XprTraits::Index Index;
32  typedef typename XprType::Nested Nested;
34  static const int NumDimensions = XprTraits::NumDimensions + 1;
35  static const int Layout = XprTraits::Layout;
36 };
37 
38 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
39 struct eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, Eigen::Dense>
40 {
42 };
43 
44 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
45 struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1, typename eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType> >::type>
46 {
48 };
49 
50 } // end namespace internal
51 
52 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
53 class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors>
54 {
55  public:
58  typedef typename XprType::CoeffReturnType CoeffReturnType;
62 
63  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
64  DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
65  DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
66  DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
67  PaddingType padding_type, Scalar padding_value)
68  : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
69  m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
70  m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
71  m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
72  m_padding_explicit(false), m_padding_top_z(0), m_padding_bottom_z(0), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
73  m_padding_type(padding_type), m_padding_value(padding_value) {}
74 
75  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
76  DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
77  DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
78  DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
79  DenseIndex padding_top_z, DenseIndex padding_bottom_z,
80  DenseIndex padding_top, DenseIndex padding_bottom,
81  DenseIndex padding_left, DenseIndex padding_right,
82  Scalar padding_value)
83  : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
84  m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
85  m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
86  m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
87  m_padding_explicit(true), m_padding_top_z(padding_top_z), m_padding_bottom_z(padding_bottom_z), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
88  m_padding_left(padding_left), m_padding_right(padding_right),
89  m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
90 
91  EIGEN_DEVICE_FUNC
92  DenseIndex patch_planes() const { return m_patch_planes; }
93  EIGEN_DEVICE_FUNC
94  DenseIndex patch_rows() const { return m_patch_rows; }
95  EIGEN_DEVICE_FUNC
96  DenseIndex patch_cols() const { return m_patch_cols; }
97  EIGEN_DEVICE_FUNC
98  DenseIndex plane_strides() const { return m_plane_strides; }
99  EIGEN_DEVICE_FUNC
100  DenseIndex row_strides() const { return m_row_strides; }
101  EIGEN_DEVICE_FUNC
102  DenseIndex col_strides() const { return m_col_strides; }
103  EIGEN_DEVICE_FUNC
104  DenseIndex in_plane_strides() const { return m_in_plane_strides; }
105  EIGEN_DEVICE_FUNC
106  DenseIndex in_row_strides() const { return m_in_row_strides; }
107  EIGEN_DEVICE_FUNC
108  DenseIndex in_col_strides() const { return m_in_col_strides; }
109  EIGEN_DEVICE_FUNC
110  DenseIndex plane_inflate_strides() const { return m_plane_inflate_strides; }
111  EIGEN_DEVICE_FUNC
112  DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
113  EIGEN_DEVICE_FUNC
114  DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
115  EIGEN_DEVICE_FUNC
116  bool padding_explicit() const { return m_padding_explicit; }
117  EIGEN_DEVICE_FUNC
118  DenseIndex padding_top_z() const { return m_padding_top_z; }
119  EIGEN_DEVICE_FUNC
120  DenseIndex padding_bottom_z() const { return m_padding_bottom_z; }
121  EIGEN_DEVICE_FUNC
122  DenseIndex padding_top() const { return m_padding_top; }
123  EIGEN_DEVICE_FUNC
124  DenseIndex padding_bottom() const { return m_padding_bottom; }
125  EIGEN_DEVICE_FUNC
126  DenseIndex padding_left() const { return m_padding_left; }
127  EIGEN_DEVICE_FUNC
128  DenseIndex padding_right() const { return m_padding_right; }
129  EIGEN_DEVICE_FUNC
130  PaddingType padding_type() const { return m_padding_type; }
131  EIGEN_DEVICE_FUNC
132  Scalar padding_value() const { return m_padding_value; }
133 
134  EIGEN_DEVICE_FUNC
136  expression() const { return m_xpr; }
137 
138  protected:
139  typename XprType::Nested m_xpr;
152  const bool m_padding_explicit;
160  const Scalar m_padding_value;
161 };
162 
163 
164 // Eval as rvalue
165 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
166 struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device>
167 {
169  typedef typename XprType::Index Index;
171  static const int NumDims = NumInputDims + 1;
177 
178  enum {
179  IsAligned = false,
181  BlockAccess = false,
183  CoordAccess = false,
184  RawAccess = false
185  };
186 
187  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
188  : m_impl(op.expression(), device)
189  {
190  EIGEN_STATIC_ASSERT((NumDims >= 5), YOU_MADE_A_PROGRAMMING_MISTAKE);
191 
192  m_paddingValue = op.padding_value();
193 
194  const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
195 
196  // Cache a few variables.
197  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
198  m_inputDepth = input_dims[0];
199  m_inputPlanes = input_dims[1];
200  m_inputRows = input_dims[2];
201  m_inputCols = input_dims[3];
202  } else {
203  m_inputDepth = input_dims[NumInputDims-1];
204  m_inputPlanes = input_dims[NumInputDims-2];
205  m_inputRows = input_dims[NumInputDims-3];
206  m_inputCols = input_dims[NumInputDims-4];
207  }
208 
209  m_plane_strides = op.plane_strides();
210  m_row_strides = op.row_strides();
211  m_col_strides = op.col_strides();
212 
213  // Input strides and effective input/patch size
214  m_in_plane_strides = op.in_plane_strides();
215  m_in_row_strides = op.in_row_strides();
216  m_in_col_strides = op.in_col_strides();
217  m_plane_inflate_strides = op.plane_inflate_strides();
218  m_row_inflate_strides = op.row_inflate_strides();
219  m_col_inflate_strides = op.col_inflate_strides();
220 
221  // The "effective" spatial size after inflating data with zeros.
222  m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1;
223  m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
224  m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
225  m_patch_planes_eff = op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1);
226  m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
227  m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
228 
229  if (op.padding_explicit()) {
230  m_outputPlanes = numext::ceil((m_input_planes_eff + op.padding_top_z() + op.padding_bottom_z() - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
231  m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
232  m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
233  m_planePaddingTop = op.padding_top_z();
234  m_rowPaddingTop = op.padding_top();
235  m_colPaddingLeft = op.padding_left();
236  } else {
237  // Computing padding from the type
238  switch (op.padding_type()) {
239  case PADDING_VALID:
240  m_outputPlanes = numext::ceil((m_input_planes_eff - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
241  m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
242  m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
243  m_planePaddingTop = 0;
244  m_rowPaddingTop = 0;
245  m_colPaddingLeft = 0;
246  break;
247  case PADDING_SAME: {
248  m_outputPlanes = numext::ceil(m_input_planes_eff / static_cast<float>(m_plane_strides));
249  m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
250  m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
251  const Index dz = m_outputPlanes * m_plane_strides + m_patch_planes_eff - 1 - m_input_planes_eff;
252  const Index dy = m_outputRows * m_row_strides + m_patch_rows_eff - 1 - m_input_rows_eff;
253  const Index dx = m_outputCols * m_col_strides + m_patch_cols_eff - 1 - m_input_cols_eff;
254  m_planePaddingTop = dz - dz / 2;
255  m_rowPaddingTop = dy - dy / 2;
256  m_colPaddingLeft = dx - dx / 2;
257  break;
258  }
259  default:
260  eigen_assert(false && "unexpected padding");
261  }
262  }
263  eigen_assert(m_outputRows > 0);
264  eigen_assert(m_outputCols > 0);
265  eigen_assert(m_outputPlanes > 0);
266 
267  // Dimensions for result of extraction.
268  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
269  // ColMajor
270  // 0: depth
271  // 1: patch_planes
272  // 2: patch_rows
273  // 3: patch_cols
274  // 4: number of patches
275  // 5 and beyond: anything else (such as batch).
276  m_dimensions[0] = input_dims[0];
277  m_dimensions[1] = op.patch_planes();
278  m_dimensions[2] = op.patch_rows();
279  m_dimensions[3] = op.patch_cols();
280  m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols;
281  for (int i = 5; i < NumDims; ++i) {
282  m_dimensions[i] = input_dims[i-1];
283  }
284  } else {
285  // RowMajor
286  // NumDims-1: depth
287  // NumDims-2: patch_planes
288  // NumDims-3: patch_rows
289  // NumDims-4: patch_cols
290  // NumDims-5: number of patches
291  // NumDims-6 and beyond: anything else (such as batch).
292  m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
293  m_dimensions[NumDims-2] = op.patch_planes();
294  m_dimensions[NumDims-3] = op.patch_rows();
295  m_dimensions[NumDims-4] = op.patch_cols();
296  m_dimensions[NumDims-5] = m_outputPlanes * m_outputRows * m_outputCols;
297  for (int i = NumDims-6; i >= 0; --i) {
298  m_dimensions[i] = input_dims[i];
299  }
300  }
301 
302  // Strides for the output tensor.
303  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
304  m_rowStride = m_dimensions[1];
305  m_colStride = m_dimensions[2] * m_rowStride;
306  m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0];
307  m_otherStride = m_patchStride * m_dimensions[4];
308  } else {
309  m_rowStride = m_dimensions[NumDims-2];
310  m_colStride = m_dimensions[NumDims-3] * m_rowStride;
311  m_patchStride = m_colStride * m_dimensions[NumDims-4] * m_dimensions[NumDims-1];
312  m_otherStride = m_patchStride * m_dimensions[NumDims-5];
313  }
314 
315  // Strides for navigating through the input tensor.
316  m_planeInputStride = m_inputDepth;
317  m_rowInputStride = m_inputDepth * m_inputPlanes;
318  m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes;
319  m_otherInputStride = m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes;
320 
321  m_outputPlanesRows = m_outputPlanes * m_outputRows;
322 
323  // Fast representations of different variables.
324  m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
325  m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
326  m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
327  m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride);
328  m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
329  m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
330  m_fastInputPlaneStride = internal::TensorIntDivisor<Index>(m_plane_inflate_strides);
331  m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
332  m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes);
333  m_fastOutputPlanesRows = internal::TensorIntDivisor<Index>(m_outputPlanesRows);
334 
335  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
336  m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
337  } else {
338  m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
339  }
340  }
341 
342  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
343 
344  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
345  m_impl.evalSubExprsIfNeeded(NULL);
346  return true;
347  }
348 
349  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
350  m_impl.cleanup();
351  }
352 
353  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
354  {
355  // Patch index corresponding to the passed in index.
356  const Index patchIndex = index / m_fastPatchStride;
357 
358  // Spatial offset within the patch. This has to be translated into 3D
359  // coordinates within the patch.
360  const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
361 
362  // Batch, etc.
363  const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride;
364  const Index patch3DIndex = (NumDims == 5) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
365 
366  // Calculate column index in the input original tensor.
367  const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
368  const Index colOffset = patchOffset / m_fastColStride;
369  const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
370  const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
371  if (inputCol < 0 || inputCol >= m_input_cols_eff ||
372  ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
373  return Scalar(m_paddingValue);
374  }
375 
376  // Calculate row index in the original input tensor.
377  const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
378  const Index rowOffset = (patchOffset - colOffset * m_colStride) / m_fastRowStride;
379  const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
380  const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
381  if (inputRow < 0 || inputRow >= m_input_rows_eff ||
382  ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
383  return Scalar(m_paddingValue);
384  }
385 
386  // Calculate plane index in the original input tensor.
387  const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
388  const Index planeOffset = patchOffset - colOffset * m_colStride - rowOffset * m_rowStride;
389  const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop;
390  const Index origInputPlane = (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
391  if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
392  ((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) {
393  return Scalar(m_paddingValue);
394  }
395 
396  const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
397  const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
398 
399  const Index inputIndex = depth +
400  origInputRow * m_rowInputStride +
401  origInputCol * m_colInputStride +
402  origInputPlane * m_planeInputStride +
403  otherIndex * m_otherInputStride;
404 
405  return m_impl.coeff(inputIndex);
406  }
407 
408  template<int LoadMode>
409  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
410  {
411  EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
412  eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
413 
414  if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1 ||
415  m_in_plane_strides != 1 || m_plane_inflate_strides != 1) {
416  return packetWithPossibleZero(index);
417  }
418 
419  const Index indices[2] = {index, index + PacketSize - 1};
420  const Index patchIndex = indices[0] / m_fastPatchStride;
421  if (patchIndex != indices[1] / m_fastPatchStride) {
422  return packetWithPossibleZero(index);
423  }
424  const Index otherIndex = (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride;
425  eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
426 
427  // Find the offset of the element wrt the location of the first element.
428  const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
429  (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
430 
431  const Index patch3DIndex = (NumDims == 5) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
432  eigen_assert(patch3DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
433 
434  const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
435  const Index colOffsets[2] = {
436  patchOffsets[0] / m_fastColStride,
437  patchOffsets[1] / m_fastColStride};
438 
439  // Calculate col indices in the original input tensor.
440  const Index inputCols[2] = {
441  colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft,
442  colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
443  if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
444  return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
445  }
446 
447  if (inputCols[0] != inputCols[1]) {
448  return packetWithPossibleZero(index);
449  }
450 
451  const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
452  const Index rowOffsets[2] = {
453  (patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride,
454  (patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride};
455  eigen_assert(rowOffsets[0] <= rowOffsets[1]);
456  // Calculate col indices in the original input tensor.
457  const Index inputRows[2] = {
458  rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop,
459  rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
460 
461  if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
462  return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
463  }
464 
465  if (inputRows[0] != inputRows[1]) {
466  return packetWithPossibleZero(index);
467  }
468 
469  const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
470  const Index planeOffsets[2] = {
471  patchOffsets[0] - colOffsets[0] * m_colStride - rowOffsets[0] * m_rowStride,
472  patchOffsets[1] - colOffsets[1] * m_colStride - rowOffsets[1] * m_rowStride};
473  eigen_assert(planeOffsets[0] <= planeOffsets[1]);
474  const Index inputPlanes[2] = {
475  planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop,
476  planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop};
477 
478  if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) {
479  return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
480  }
481 
482  if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) {
483  // no padding
484  const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
485  const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
486  const Index inputIndex = depth +
487  inputRows[0] * m_rowInputStride +
488  inputCols[0] * m_colInputStride +
489  m_planeInputStride * inputPlanes[0] +
490  otherIndex * m_otherInputStride;
491  return m_impl.template packet<Unaligned>(inputIndex);
492  }
493 
494  return packetWithPossibleZero(index);
495  }
496 
497  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
498  costPerCoeff(bool vectorized) const {
499  const double compute_cost =
500  10 * TensorOpCost::DivCost<Index>() + 21 * TensorOpCost::MulCost<Index>() +
501  8 * TensorOpCost::AddCost<Index>();
502  return TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
503  }
504 
505  EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
506 
507  const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
508 
509  Index planePaddingTop() const { return m_planePaddingTop; }
510  Index rowPaddingTop() const { return m_rowPaddingTop; }
511  Index colPaddingLeft() const { return m_colPaddingLeft; }
512  Index outputPlanes() const { return m_outputPlanes; }
513  Index outputRows() const { return m_outputRows; }
514  Index outputCols() const { return m_outputCols; }
515  Index userPlaneStride() const { return m_plane_strides; }
516  Index userRowStride() const { return m_row_strides; }
517  Index userColStride() const { return m_col_strides; }
518  Index userInPlaneStride() const { return m_in_plane_strides; }
519  Index userInRowStride() const { return m_in_row_strides; }
520  Index userInColStride() const { return m_in_col_strides; }
521  Index planeInflateStride() const { return m_plane_inflate_strides; }
522  Index rowInflateStride() const { return m_row_inflate_strides; }
523  Index colInflateStride() const { return m_col_inflate_strides; }
524 
525  protected:
526  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
527  {
529  for (int i = 0; i < PacketSize; ++i) {
530  values[i] = coeff(index+i);
531  }
532  PacketReturnType rslt = internal::pload<PacketReturnType>(values);
533  return rslt;
534  }
535 
536  Dimensions m_dimensions;
537 
538  // Parameters passed to the costructor.
542 
546 
550 
554 
558 
559  // Cached input size.
562  Index m_inputRows;
563  Index m_inputCols;
564 
565  // Other cached variables.
567 
568  // Effective input/patch post-inflation size.
575 
576  // Strides for the output tensor.
579  Index m_rowStride;
580  Index m_colStride;
581 
582  // Strides for the input tensor.
587 
599 
601 
603 };
604 
605 
606 } // end namespace Eigen
607 
608 #endif // EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
EIGEN_DEVICE_FUNC DenseIndex padding_top_z() const
#define EIGEN_STRONG_INLINE
Definition: Macros.h:493
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
EIGEN_DEVICE_FUNC DenseIndex in_col_strides() const
std::vector< double > values
EIGEN_DEVICE_FUNC const internal::remove_all< typename XprType::Nested >::type & expression() const
EIGEN_DEVICE_FUNC DenseIndex padding_bottom() const
static int f(const TensorMap< Tensor< int, 3 > > &tensor)
EIGEN_DEVICE_FUNC DenseIndex col_strides() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType &expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, PaddingType padding_type, Scalar padding_value)
Definition: LDLT.h:16
A cost model used to limit the number of threads used for evaluating tensor expression.
EIGEN_DEVICE_FUNC DenseIndex patch_cols() const
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:122
const DenseIndex m_padding_top_z
EIGEN_DEVICE_FUNC DenseIndex col_inflate_strides() const
EIGEN_DEVICE_FUNC bool padding_explicit() const
EIGEN_DEVICE_FUNC const CeilReturnType ceil() const
EIGEN_DEVICE_FUNC DenseIndex row_strides() const
EIGEN_DEVICE_FUNC DenseIndex padding_bottom_z() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType &op, const Device &device)
const DenseIndex m_padding_bottom_z
Eigen::internal::traits< TensorVolumePatchOp >::StorageKind StorageKind
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
#define eigen_assert(x)
Definition: Macros.h:577
const DenseIndex m_in_row_strides
Eigen::internal::traits< TensorVolumePatchOp >::Index Index
const DenseIndex m_plane_strides
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
EIGEN_DEVICE_FUNC DenseIndex padding_right() const
EIGEN_DEVICE_FUNC DenseIndex plane_inflate_strides() const
const DenseIndex m_plane_inflate_strides
The tensor base class.
Definition: TensorBase.h:827
const DenseIndex m_padding_right
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
Definition: Meta.h:25
const DenseIndex m_in_plane_strides
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const
EIGEN_DEVICE_FUNC DenseIndex in_row_strides() const
EIGEN_DEVICE_FUNC DenseIndex plane_strides() const
const DenseIndex m_padding_bottom
#define EIGEN_ALIGN_MAX
Definition: Macros.h:755
Eigen::NumTraits< Scalar >::Real RealScalar
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
const PaddingType m_padding_type
XprType::CoeffReturnType CoeffReturnType
const DenseIndex m_row_inflate_strides
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
EIGEN_DEVICE_FUNC DenseIndex in_plane_strides() const
const DenseIndex m_col_inflate_strides
EIGEN_DEVICE_FUNC PaddingType padding_type() const
Eigen::internal::traits< TensorVolumePatchOp >::Scalar Scalar
internal::remove_const< typename XprType::Scalar >::type Scalar
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType &expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, DenseIndex padding_top_z, DenseIndex padding_bottom_z, DenseIndex padding_top, DenseIndex padding_bottom, DenseIndex padding_left, DenseIndex padding_right, Scalar padding_value)
Eigen::internal::nested< TensorVolumePatchOp >::type Nested
EIGEN_DEVICE_FUNC DenseIndex patch_rows() const
EIGEN_DEVICE_FUNC DenseIndex patch_planes() const
EIGEN_DEVICE_FUNC Scalar padding_value() const
EIGEN_DEVICE_FUNC DenseIndex padding_top() const
internal::packet_traits< Scalar >::type type
Definition: TensorMeta.h:51
const DenseIndex m_in_col_strides
EIGEN_DEVICE_FUNC DenseIndex padding_left() const
EIGEN_DEVICE_FUNC DenseIndex row_inflate_strides() const


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:09:39