StableNorm.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_STABLENORM_H
11 #define EIGEN_STABLENORM_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 template<typename ExpressionType, typename Scalar>
18 inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
19 {
20  Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
21 
22  if(maxCoeff>scale)
23  {
24  ssq = ssq * numext::abs2(scale/maxCoeff);
25  Scalar tmp = Scalar(1)/maxCoeff;
26  if(tmp > NumTraits<Scalar>::highest())
27  {
28  invScale = NumTraits<Scalar>::highest();
29  scale = Scalar(1)/invScale;
30  }
31  else if(maxCoeff>NumTraits<Scalar>::highest()) // we got a INF
32  {
33  invScale = Scalar(1);
34  scale = maxCoeff;
35  }
36  else
37  {
38  scale = maxCoeff;
39  invScale = tmp;
40  }
41  }
42  else if(maxCoeff!=maxCoeff) // we got a NaN
43  {
44  scale = maxCoeff;
45  }
46 
47  // TODO if the maxCoeff is much much smaller than the current scale,
48  // then we can neglect this sub vector
49  if(scale>Scalar(0)) // if scale==0, then bl is 0
50  ssq += (bl*invScale).squaredNorm();
51 }
52 
53 template<typename Derived>
54 inline typename NumTraits<typename traits<Derived>::Scalar>::Real
56 {
57  typedef typename Derived::RealScalar RealScalar;
58  using std::pow;
59  using std::sqrt;
60  using std::abs;
61  const Derived& vec(_vec.derived());
62  static bool initialized = false;
63  static RealScalar b1, b2, s1m, s2m, rbig, relerr;
64  if(!initialized)
65  {
66  int ibeta, it, iemin, iemax, iexp;
67  RealScalar eps;
68  // This program calculates the machine-dependent constants
69  // bl, b2, slm, s2m, relerr overfl
70  // from the "basic" machine-dependent numbers
71  // nbig, ibeta, it, iemin, iemax, rbig.
72  // The following define the basic machine-dependent constants.
73  // For portability, the PORT subprograms "ilmaeh" and "rlmach"
74  // are used. For any specific computer, each of the assignment
75  // statements can be replaced
76  ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
77  it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
78  iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
79  iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
80  rbig = (std::numeric_limits<RealScalar>::max)(); // largest floating-point number
81 
82  iexp = -((1-iemin)/2);
83  b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange
84  iexp = (iemax + 1 - it)/2;
85  b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange
86 
87  iexp = (2-iemin)/2;
88  s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range
89  iexp = - ((iemax+it)/2);
90  s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
91 
92  eps = RealScalar(pow(double(ibeta), 1-it));
93  relerr = sqrt(eps); // tolerance for neglecting asml
94  initialized = true;
95  }
96  Index n = vec.size();
97  RealScalar ab2 = b2 / RealScalar(n);
98  RealScalar asml = RealScalar(0);
99  RealScalar amed = RealScalar(0);
100  RealScalar abig = RealScalar(0);
101  for(typename Derived::InnerIterator it(vec, 0); it; ++it)
102  {
103  RealScalar ax = abs(it.value());
104  if(ax > ab2) abig += numext::abs2(ax*s2m);
105  else if(ax < b1) asml += numext::abs2(ax*s1m);
106  else amed += numext::abs2(ax);
107  }
108  if(amed!=amed)
109  return amed; // we got a NaN
110  if(abig > RealScalar(0))
111  {
112  abig = sqrt(abig);
113  if(abig > rbig) // overflow, or *this contains INF values
114  return abig; // return INF
115  if(amed > RealScalar(0))
116  {
117  abig = abig/s2m;
118  amed = sqrt(amed);
119  }
120  else
121  return abig/s2m;
122  }
123  else if(asml > RealScalar(0))
124  {
125  if (amed > RealScalar(0))
126  {
127  abig = sqrt(amed);
128  amed = sqrt(asml) / s1m;
129  }
130  else
131  return sqrt(asml)/s1m;
132  }
133  else
134  return sqrt(amed);
135  asml = numext::mini(abig, amed);
136  abig = numext::maxi(abig, amed);
137  if(asml <= abig*relerr)
138  return abig;
139  else
140  return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
141 }
142 
143 } // end namespace internal
144 
155 template<typename Derived>
158 {
159  using std::sqrt;
160  using std::abs;
161  const Index blockSize = 4096;
162  RealScalar scale(0);
163  RealScalar invScale(1);
164  RealScalar ssq(0); // sum of square
165 
166  typedef typename internal::nested_eval<Derived,2>::type DerivedCopy;
167  typedef typename internal::remove_all<DerivedCopy>::type DerivedCopyClean;
168  DerivedCopy copy(derived());
169 
170  enum {
171  CanAlign = ( (int(DerivedCopyClean::Flags)&DirectAccessBit)
172  || (int(internal::evaluator<DerivedCopyClean>::Alignment)>0) // FIXME Alignment)>0 might not be enough
173  ) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT)
174  && (EIGEN_MAX_STATIC_ALIGN_BYTES>0) // if we cannot allocate on the stack, then let's not bother about this optimization
175  };
177  typename DerivedCopyClean::ConstSegmentReturnType>::type SegmentWrapper;
178  Index n = size();
179 
180  if(n==1)
181  return abs(this->coeff(0));
182 
184  if (bi>0)
185  internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale);
186  for (; bi<n; bi+=blockSize)
187  internal::stable_norm_kernel(SegmentWrapper(copy.segment(bi,numext::mini(blockSize, n - bi))), ssq, scale, invScale);
188  return scale * sqrt(ssq);
189 }
190 
200 template<typename Derived>
203 {
204  return internal::blueNorm_impl(*this);
205 }
206 
212 template<typename Derived>
215 {
216  return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
217 }
218 
219 } // end namespace Eigen
220 
221 #endif // EIGEN_STABLENORM_H
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half &a, const half &b)
Definition: Half.h:407
internal::traits< Derived >::Scalar Scalar
Definition: DenseBase.h:66
const unsigned int DirectAccessBit
Definition: Constants.h:150
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Definition: LDLT.h:16
void stable_norm_kernel(const ExpressionType &bl, Scalar &ssq, Scalar &scale, Scalar &invScale)
Definition: StableNorm.h:18
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:150
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
Derived::RealScalar relerr(const MatrixBase< Derived > &A, const MatrixBase< OtherDerived > &B)
static Index first_default_aligned(const DenseBase< Derived > &m)
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half() max(const half &a, const half &b)
Definition: Half.h:438
NumTraits< typename traits< Derived >::Scalar >::Real blueNorm_impl(const EigenBase< Derived > &_vec)
Definition: StableNorm.h:55
RealScalar blueNorm() const
Definition: StableNorm.h:202
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseAbsReturnType cwiseAbs() const
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
RealScalar stableNorm() const
Definition: StableNorm.h:157
const VectorBlock< const Derived > ConstSegmentReturnType
Definition: BlockMethods.h:39
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Abs2ReturnType abs2() const
NumTraits< Scalar >::Real RealScalar
Definition: DenseBase.h:73
#define EIGEN_MAX_STATIC_ALIGN_BYTES
Definition: Macros.h:726
RealScalar hypotNorm() const
Definition: StableNorm.h:214
#define EIGEN_STACK_ALLOCATION_LIMIT
Definition: Macros.h:799
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:45


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:09:03