wrap/pybind11/include/pybind11/eigen.h
Go to the documentation of this file.
1 /*
2  pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices
3 
4  Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
5 
6  All rights reserved. Use of this source code is governed by a
7  BSD-style license that can be found in the LICENSE file.
8 */
9 
10 #pragma once
11 
12 #include "numpy.h"
13 
14 #if defined(__INTEL_COMPILER)
15 # pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
16 #elif defined(__GNUG__) || defined(__clang__)
17 # pragma GCC diagnostic push
18 # pragma GCC diagnostic ignored "-Wconversion"
19 # pragma GCC diagnostic ignored "-Wdeprecated-declarations"
20 # ifdef __clang__
21 // Eigen generates a bunch of implicit-copy-constructor-is-deprecated warnings with -Wdeprecated
22 // under Clang, so disable that warning here:
23 # pragma GCC diagnostic ignored "-Wdeprecated"
24 # endif
25 # if __GNUC__ >= 7
26 # pragma GCC diagnostic ignored "-Wint-in-bool-context"
27 # endif
28 #endif
29 
30 #if defined(_MSC_VER)
31 # pragma warning(push)
32 # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
33 # pragma warning(disable: 4996) // warning C4996: std::unary_negate is deprecated in C++17
34 #endif
35 
36 #include <Eigen/Core>
37 #include <Eigen/SparseCore>
38 
39 // Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
40 // move constructors that break things. We could detect this an explicitly copy, but an extra copy
41 // of matrices seems highly undesirable.
42 static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7");
43 
45 
46 // Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
47 using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
48 template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
49 template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
50 
52 
53 #if EIGEN_VERSION_AT_LEAST(3,3,0)
54 using EigenIndex = Eigen::Index;
55 #else
57 #endif
58 
59 // Matches Eigen::Map, Eigen::Ref, blocks, etc:
60 template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
61 template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
64 // Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
65 // basically covers anything that can be assigned to a dense matrix but that don't have a typical
66 // matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
67 // SelfAdjointView fall into this category.
68 template <typename T> using is_eigen_other = all_of<
71 >;
72 
73 // Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
74 template <bool EigenRowMajor> struct EigenConformable {
75  bool conformable = false;
76  EigenIndex rows = 0, cols = 0;
77  EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
78  bool negativestrides = false; // If true, do not use stride!
79 
80  EigenConformable(bool fits = false) : conformable{fits} {}
81  // Matrix type:
83  EigenIndex rstride, EigenIndex cstride) :
84  conformable{true}, rows{r}, cols{c} {
85  // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
86  if (rstride < 0 || cstride < 0) {
87  negativestrides = true;
88  } else {
89  stride = {EigenRowMajor ? rstride : cstride /* outer stride */,
90  EigenRowMajor ? cstride : rstride /* inner stride */ };
91  }
92  }
93  // Vector type:
95  : EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {}
96 
97  template <typename props> bool stride_compatible() const {
98  // To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
99  // matching strides, or a dimension size of 1 (in which case the stride value is irrelevant)
100  return
101  !negativestrides &&
102  (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() ||
103  (EigenRowMajor ? cols : rows) == 1) &&
104  (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() ||
105  (EigenRowMajor ? rows : cols) == 1);
106  }
107  operator bool() const { return conformable; }
108 };
109 
110 template <typename Type> struct eigen_extract_stride { using type = Type; };
111 template <typename PlainObjectType, int MapOptions, typename StrideType>
112 struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; };
113 template <typename PlainObjectType, int Options, typename StrideType>
114 struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; };
115 
116 // Helper struct for extracting information from an Eigen type
117 template <typename Type_> struct EigenProps {
118  using Type = Type_;
119  using Scalar = typename Type::Scalar;
121  static constexpr EigenIndex
122  rows = Type::RowsAtCompileTime,
123  cols = Type::ColsAtCompileTime,
124  size = Type::SizeAtCompileTime;
125  static constexpr bool
126  row_major = Type::IsRowMajor,
127  vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
128  fixed_rows = rows != Eigen::Dynamic,
129  fixed_cols = cols != Eigen::Dynamic,
130  fixed = size != Eigen::Dynamic, // Fully-fixed size
131  dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
132 
133  template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
135  outer_stride = if_zero<StrideType::OuterStrideAtCompileTime,
136  vector ? size : row_major ? cols : rows>::value;
137  static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
138  static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
139  static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
140 
141  // Takes an input array and determines whether we can make it fit into the Eigen type. If
142  // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
143  // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
145  const auto dims = a.ndim();
146  if (dims < 1 || dims > 2)
147  return false;
148 
149  if (dims == 2) { // Matrix type: require exact match (or dynamic)
150 
151  EigenIndex
152  np_rows = a.shape(0),
153  np_cols = a.shape(1),
154  np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
155  np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
156  if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols))
157  return false;
158 
159  return {np_rows, np_cols, np_rstride, np_cstride};
160  }
161 
162  // Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever
163  // is used, we want the (single) numpy stride value.
164  const EigenIndex n = a.shape(0),
165  stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
166 
167  if (vector) { // Eigen type is a compile-time vector
168  if (fixed && size != n)
169  return false; // Vector size mismatch
170  return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
171  }
172  else if (fixed) {
173  // The type has a fixed size, but is not a vector: abort
174  return false;
175  }
176  else if (fixed_cols) {
177  // Since this isn't a vector, cols must be != 1. We allow this only if it exactly
178  // equals the number of elements (rows is Dynamic, and so 1 row is allowed).
179  if (cols != n) return false;
180  return {1, n, stride};
181  }
182  else {
183  // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
184  if (fixed_rows && rows != n) return false;
185  return {n, 1, stride};
186  }
187  }
188 
189  static constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
190  static constexpr bool show_order = is_eigen_dense_map<Type>::value;
191  static constexpr bool show_c_contiguous = show_order && requires_row_major;
192  static constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major;
193 
194  static constexpr auto descriptor =
195  _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name +
196  _("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) +
197  _(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) +
198  _("]") +
199  // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be
200  // satisfied: writeable=True (for a mutable reference), and, depending on the map's stride
201  // options, possibly f_contiguous or c_contiguous. We include them in the descriptor output
202  // to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to
203  // see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you
204  // *gave* a numpy.ndarray of the right type and dimensions.
205  _<show_writeable>(", flags.writeable", "") +
206  _<show_c_contiguous>(", flags.c_contiguous", "") +
207  _<show_f_contiguous>(", flags.f_contiguous", "") +
208  _("]");
209 };
210 
211 // Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
212 // otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
213 template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
214  constexpr ssize_t elem_size = sizeof(typename props::Scalar);
215  array a;
216  if (props::vector)
217  a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base);
218  else
219  a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() },
220  src.data(), base);
221 
222  if (!writeable)
223  array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
224 
225  return a.release();
226 }
227 
228 // Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
229 // reference the Eigen object's data with `base` as the python-registered base class (if omitted,
230 // the base will be set to None, and lifetime management is up to the caller). The numpy array is
231 // non-writeable if the given type is const.
232 template <typename props, typename Type>
233 handle eigen_ref_array(Type &src, handle parent = none()) {
234  // none here is to get past array's should-we-copy detection, which currently always
235  // copies when there is no base. Setting the base to None should be harmless.
236  return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
237 }
238 
239 // Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy
240 // array that references the encapsulated data with a python-side reference to the capsule to tie
241 // its destruction to that of any dependent python objects. Const-ness is determined by whether or
242 // not the Type of the pointer given is const.
245  capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
246  return eigen_ref_array<props>(*src, base);
247 }
248 
249 // Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
250 // types.
251 template<typename Type>
253  using Scalar = typename Type::Scalar;
255 
256  bool load(handle src, bool convert) {
257  // If we're in no-convert mode, only load if given an array of the correct type
258  if (!convert && !isinstance<array_t<Scalar>>(src))
259  return false;
260 
261  // Coerce into an array, but don't do type conversion yet; the copy below handles it.
262  auto buf = array::ensure(src);
263 
264  if (!buf)
265  return false;
266 
267  auto dims = buf.ndim();
268  if (dims < 1 || dims > 2)
269  return false;
270 
271  auto fits = props::conformable(buf);
272  if (!fits)
273  return false;
274 
275  // Allocate the new type, then build a numpy reference into it
276  value = Type(fits.rows, fits.cols);
277  auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
278  if (dims == 1) ref = ref.squeeze();
279  else if (ref.ndim() == 1) buf = buf.squeeze();
280 
281  int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
282 
283  if (result < 0) { // Copy failed!
284  PyErr_Clear();
285  return false;
286  }
287 
288  return true;
289  }
290 
291 private:
292 
293  // Cast implementation
294  template <typename CType>
295  static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
296  switch (policy) {
299  return eigen_encapsulate<props>(src);
301  return eigen_encapsulate<props>(new CType(std::move(*src)));
303  return eigen_array_cast<props>(*src);
306  return eigen_ref_array<props>(*src);
308  return eigen_ref_array<props>(*src, parent);
309  default:
310  throw cast_error("unhandled return_value_policy: should not happen!");
311  };
312  }
313 
314 public:
315 
316  // Normal returned non-reference, non-const value:
317  static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
318  return cast_impl(&src, return_value_policy::move, parent);
319  }
320  // If you return a non-reference const, we mark the numpy array readonly:
321  static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
322  return cast_impl(&src, return_value_policy::move, parent);
323  }
324  // lvalue reference return; default (automatic) becomes copy
325  static handle cast(Type &src, return_value_policy policy, handle parent) {
327  policy = return_value_policy::copy;
328  return cast_impl(&src, policy, parent);
329  }
330  // const lvalue reference return; default (automatic) becomes copy
331  static handle cast(const Type &src, return_value_policy policy, handle parent) {
333  policy = return_value_policy::copy;
334  return cast(&src, policy, parent);
335  }
336  // non-const pointer return
337  static handle cast(Type *src, return_value_policy policy, handle parent) {
338  return cast_impl(src, policy, parent);
339  }
340  // const pointer return
341  static handle cast(const Type *src, return_value_policy policy, handle parent) {
342  return cast_impl(src, policy, parent);
343  }
344 
345  static constexpr auto name = props::descriptor;
346 
347  operator Type*() { return &value; }
348  operator Type&() { return value; }
349  operator Type&&() && { return std::move(value); }
350  template <typename T> using cast_op_type = movable_cast_op_type<T>;
351 
352 private:
354 };
355 
356 // Base class for casting reference/map/block/etc. objects back to python.
357 template <typename MapType> struct eigen_map_caster {
358 private:
360 
361 public:
362 
363  // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
364  // to stay around), but we'll allow it under the assumption that you know what you're doing (and
365  // have an appropriate keep_alive in place). We return a numpy array pointing directly at the
366  // ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note
367  // that this means you need to ensure you don't destroy the object in some other way (e.g. with
368  // an appropriate keep_alive, or with a reference to a statically allocated matrix).
369  static handle cast(const MapType &src, return_value_policy policy, handle parent) {
370  switch (policy) {
372  return eigen_array_cast<props>(src);
379  default:
380  // move, take_ownership don't make any sense for a ref/map:
381  pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
382  }
383  }
384 
385  static constexpr auto name = props::descriptor;
386 
387  // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
388  // types but not bound arguments). We still provide them (with an explicitly delete) so that
389  // you end up here if you try anyway.
390  bool load(handle, bool) = delete;
391  operator MapType() = delete;
392  template <typename> using cast_op_type = MapType;
393 };
394 
395 // We can return any map-like object (but can only load Refs, specialized next):
396 template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>>
397  : eigen_map_caster<Type> {};
398 
399 // Loader for Ref<...> arguments. See the documentation for info on how to make this work without
400 // copying (it requires some extra effort in many cases).
401 template <typename PlainObjectType, typename StrideType>
402 struct type_caster<
403  Eigen::Ref<PlainObjectType, 0, StrideType>,
404  enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>
405 > : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
406 private:
409  using Scalar = typename props::Scalar;
412  ((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style :
413  (props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>;
414  static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
415  // Delay construction (these have no default constructor)
416  std::unique_ptr<MapType> map;
417  std::unique_ptr<Type> ref;
418  // Our array. When possible, this is just a numpy array pointing to the source data, but
419  // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible
420  // layout, or is an array of a type that needs to be converted). Using a numpy temporary
421  // (rather than an Eigen temporary) saves an extra copy when we need both type conversion and
422  // storage order conversion. (Note that we refuse to use this temporary copy when loading an
423  // argument for a Ref<M> with M non-const, i.e. a read-write reference).
425 public:
426  bool load(handle src, bool convert) {
427  // First check whether what we have is already an array of the right type. If not, we can't
428  // avoid a copy (because the copy is also going to do type conversion).
429  bool need_copy = !isinstance<Array>(src);
430 
432  if (!need_copy) {
433  // We don't need a converting copy, but we also need to check whether the strides are
434  // compatible with the Ref's stride requirements
435  Array aref = reinterpret_borrow<Array>(src);
436 
437  if (aref && (!need_writeable || aref.writeable())) {
438  fits = props::conformable(aref);
439  if (!fits) return false; // Incompatible dimensions
440  if (!fits.template stride_compatible<props>())
441  need_copy = true;
442  else
443  copy_or_ref = std::move(aref);
444  }
445  else {
446  need_copy = true;
447  }
448  }
449 
450  if (need_copy) {
451  // We need to copy: If we need a mutable reference, or we're not supposed to convert
452  // (either because we're in the no-convert overload pass, or because we're explicitly
453  // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
454  if (!convert || need_writeable) return false;
455 
456  Array copy = Array::ensure(src);
457  if (!copy) return false;
458  fits = props::conformable(copy);
459  if (!fits || !fits.template stride_compatible<props>())
460  return false;
461  copy_or_ref = std::move(copy);
463  }
464 
465  ref.reset();
466  map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner())));
467  ref.reset(new Type(*map));
468 
469  return true;
470  }
471 
472  operator Type*() { return ref.get(); }
473  operator Type&() { return *ref; }
474  template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
475 
476 private:
478  Scalar *data(Array &a) { return a.mutable_data(); }
479 
481  const Scalar *data(Array &a) { return a.data(); }
482 
483  // Attempt to figure out a constructor of `Stride` that will work.
484  // If both strides are fixed, use a default constructor:
485  template <typename S> using stride_ctor_default = bool_constant<
486  S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
488  // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
489  // Eigen::Stride, and use it:
490  template <typename S> using stride_ctor_dual = bool_constant<
492  // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
493  // it (passing whichever stride is dynamic).
494  template <typename S> using stride_ctor_outer = bool_constant<
496  S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic &&
498  template <typename S> using stride_ctor_inner = bool_constant<
500  S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
502 
504  static S make_stride(EigenIndex, EigenIndex) { return S(); }
506  static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); }
508  static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); }
510  static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); }
511 
512 };
513 
514 // type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
515 // EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
516 // load() is not supported, but we can cast them into the python domain by first copying to a
517 // regular Eigen::Matrix, then casting that.
518 template <typename Type>
520 protected:
523 public:
524  static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
525  handle h = eigen_encapsulate<props>(new Matrix(src));
526  return h;
527  }
528  static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); }
529 
530  static constexpr auto name = props::descriptor;
531 
532  // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
533  // types but not bound arguments). We still provide them (with an explicitly delete) so that
534  // you end up here if you try anyway.
535  bool load(handle, bool) = delete;
536  operator Type() = delete;
537  template <typename> using cast_op_type = Type;
538 };
539 
540 template<typename Type>
542  typedef typename Type::Scalar Scalar;
544  typedef typename Type::Index Index;
545  static constexpr bool rowMajor = Type::IsRowMajor;
546 
547  bool load(handle src, bool) {
548  if (!src)
549  return false;
550 
551  auto obj = reinterpret_borrow<object>(src);
552  object sparse_module = module::import("scipy.sparse");
553  object matrix_type = sparse_module.attr(
554  rowMajor ? "csr_matrix" : "csc_matrix");
555 
556  if (!type::handle_of(obj).is(matrix_type)) {
557  try {
558  obj = matrix_type(obj);
559  } catch (const error_already_set &) {
560  return false;
561  }
562  }
563 
564  auto values = array_t<Scalar>((object) obj.attr("data"));
565  auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
566  auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
567  auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
568  auto nnz = obj.attr("nnz").cast<Index>();
569 
570  if (!values || !innerIndices || !outerIndices)
571  return false;
572 
574  shape[0].cast<Index>(), shape[1].cast<Index>(), nnz,
575  outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data());
576 
577  return true;
578  }
579 
580  static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
581  const_cast<Type&>(src).makeCompressed();
582 
583  object matrix_type = module::import("scipy.sparse").attr(
584  rowMajor ? "csr_matrix" : "csc_matrix");
585 
586  array data(src.nonZeros(), src.valuePtr());
587  array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
588  array innerIndices(src.nonZeros(), src.innerIndexPtr());
589 
590  return matrix_type(
591  std::make_tuple(data, innerIndices, outerIndices),
592  std::make_pair(src.rows(), src.cols())
593  ).release();
594  }
595 
596  PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[")
598 };
599 
602 
603 #if defined(__GNUG__) || defined(__clang__)
604 # pragma GCC diagnostic pop
605 #elif defined(_MSC_VER)
606 # pragma warning(pop)
607 #endif
std::unique_ptr< MapType > map
int array[24]
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE
SCALAR Scalar
Definition: bench_gemm.cpp:33
all_of< is_template_base_of< Eigen::EigenBase, T >, negation< any_of< is_eigen_dense_map< T >, is_eigen_dense_plain< T >, is_eigen_sparse< T >>> > is_eigen_other
static handle cast(const Type &src, return_value_policy policy, handle parent)
static handle handle_of()
Definition: cast.h:2209
typename eigen_extract_stride< Type >::type StrideType
T cast() const &
Definition: cast.h:1789
A makeCompressed()
const ssize_t * shape() const
Dimensions of the array.
Definition: numpy.h:648
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:94
PyObject * ptr() const
Return the underlying PyObject * pointer.
Definition: pytypes.h:184
all_of< is_template_base_of< Eigen::DenseBase, T >, std::is_base_of< Eigen::MapBase< T, Eigen::ReadOnlyAccessors >, T >> is_eigen_dense_map
Definition: numpy.h:543
int n
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
static S make_stride(EigenIndex outer, EigenIndex)
leaf::MyValues values
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
MatrixXf MatrixType
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
bool isinstance(handle obj)
Definition: pytypes.h:384
static handle cast(const Type *src, return_value_policy policy, handle parent)
Definition: pytypes.h:1057
handle eigen_ref_array(Type &src, handle parent=none())
Array33i a
static handle cast(const MapType &src, return_value_policy policy, handle parent)
static S make_stride(EigenIndex outer, EigenIndex inner)
PyExc_RuntimeError[[noreturn]] PYBIND11_NOINLINE void pybind11_fail(const char *reason)
Used internally.
const ssize_t * strides() const
Strides of the array.
Definition: numpy.h:660
Scalar Scalar int size
Definition: benchVecAdd.cpp:17
T * mutable_data(Ix...index)
Definition: numpy.h:886
handle eigen_encapsulate(Type *src)
Tuple< Args... > make_tuple(Args...args)
Creates a tuple object, deducing the target type from the types of arguments.
static handle cast(Type *src, return_value_policy policy, handle parent)
Values result
#define EIGEN_VERSION_AT_LEAST(x, y, z)
Definition: Macros.h:18
std::unique_ptr< Type > ref
Key S(std::uint64_t j)
EIGEN_DEVICE_FUNC Index outer() const
Definition: Stride.h:77
std::integral_constant< EigenIndex, i==0?ifzero:i > if_zero
bool convert(const int &y)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
static handle cast(const Type &&src, return_value_policy, handle parent)
std::integral_constant< bool, B > bool_constant
Backports of std::bool_constant and std::negation to accommodate older compilers. ...
EIGEN_DEVICE_FUNC NewType cast(const OldType &x)
int data[]
static handle cast(Type &src, return_value_policy policy, handle parent)
bool_constant< !stride_ctor_default< S >::value &&std::is_constructible< S, EigenIndex, EigenIndex >::value > stride_ctor_dual
typename std::remove_reference< T >::type remove_reference_t
bool load(handle src, bool convert)
conditional_t< std::is_pointer< typename std::remove_reference< T >::type >::value, typename std::add_pointer< intrinsic_t< T >>::type, conditional_t< std::is_rvalue_reference< T >::value, typename std::add_rvalue_reference< intrinsic_t< T >>::type, typename std::add_lvalue_reference< intrinsic_t< T >>::type >> movable_cast_op_type
Definition: cast.h:788
std::is_base_of< Eigen::MapBase< T, Eigen::WriteAccessors >, T > is_eigen_mutable_map
bool_constant< !any_of< stride_ctor_default< S >, stride_ctor_dual< S >>::value &&S::InnerStrideAtCompileTime==Eigen::Dynamic &&S::OuterStrideAtCompileTime!=Eigen::Dynamic &&std::is_constructible< S, EigenIndex >::value > stride_ctor_inner
bool_constant< S::InnerStrideAtCompileTime!=Eigen::Dynamic &&S::OuterStrideAtCompileTime!=Eigen::Dynamic &&std::is_default_constructible< S >::value > stride_ctor_default
static handle cast(const Type &src, return_value_policy, handle)
const Scalar * data(Array &a)
typename props::Scalar Scalar
Reference counting helper.
Definition: object.h:62
static S make_stride(EigenIndex, EigenIndex)
all_of< negation< is_eigen_dense_map< T >>, is_template_base_of< Eigen::PlainObjectBase, T >> is_eigen_dense_plain
static handle cast(const Type &src, return_value_policy, handle)
A matrix or vector expression mapping an existing expression.
Definition: Ref.h:192
remove_reference_t< decltype(*std::declval< Type >).outerIndexPtr())> StorageIndex
const double h
static array ensure(handle h, int ExtraFlags=0)
Definition: numpy.h:766
EIGEN_DEFAULT_DENSE_INDEX_TYPE EigenIndex
handle release()
Definition: pytypes.h:249
Map< MatrixType > MapType
static module_ import(const char *name)
Import and return a module or throws error_already_set.
Definition: pybind11.h:914
decltype(is_template_base_of_impl< Base >::check((intrinsic_t< T > *) nullptr)) is_template_base_of
handle eigen_array_cast(typename props::Type const &src, handle base=handle(), bool writeable=true)
static S make_stride(EigenIndex, EigenIndex inner)
std::is_same< bools< Ts::value..., true >, bools< true, Ts::value... >> all_of
ssize_t ndim() const
Number of dimensions.
Definition: numpy.h:638
is_template_base_of< Eigen::SparseMatrixBase, T > is_eigen_sparse
const T * data(Ix...index) const
Definition: numpy.h:882
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex rstride, EigenIndex cstride)
bool writeable() const
If set, the array is writeable (otherwise the buffer is read-only)
Definition: numpy.h:677
pybind11::detail::cast_op_type< _T > cast_op_type
typename std::enable_if< B, T >::type enable_if_t
from cpp_future import (convenient aliases from C++14/17)
Definition: numpy.h:836
Annotation for function names.
Definition: attr.h:36
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > Matrix
Annotation indicating that a class derives from another given type.
Definition: attr.h:42
const int Dynamic
Definition: Constants.h:21
Container::iterator get(Container &c, Position position)
static handle cast_impl(CType *src, return_value_policy policy, handle parent)
void load(Archive &ar, Eigen::Matrix< Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_ > &m, const unsigned int)
Definition: base/Matrix.h:573
The matrix class, also used for vectors and row-vectors.
static EigenConformable< row_major > conformable(const array &a)
return_value_policy
Approach used to cast a previously unknown C++ instance into a Python object.
EIGEN_DEVICE_FUNC Index inner() const
Definition: Stride.h:80
typename Type::Scalar Scalar
static PYBIND11_NOINLINE void add_patient(handle h)
Definition: cast.h:68
#define PYBIND11_TYPE_CASTER(type, py_name)
Definition: cast.h:979
#define PYBIND11_NAMESPACE_END(name)
static handle cast(const Type *src, return_value_policy policy, handle parent)
bool_constant< !any_of< stride_ctor_default< S >, stride_ctor_dual< S >>::value &&S::OuterStrideAtCompileTime==Eigen::Dynamic &&S::InnerStrideAtCompileTime!=Eigen::Dynamic &&std::is_constructible< S, EigenIndex >::value > stride_ctor_outer
Definition: pytypes.h:897
#define PYBIND11_NAMESPACE_BEGIN(name)
PyArray_Proxy * array_proxy(void *ptr)
Definition: numpy.h:258


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:42:00