12 #include <unsupported/Eigen/Splines> 38 RowVectorXd knots(12);
53 ctrls << -0.370967741935484, 0.236842105263158,
54 -0.231401860693277, 0.442245185027632,
55 0.344361228532831, 0.773369994120753,
56 0.828990216203802, 0.106550882647595,
57 0.407270163678382, -1.043452922172848,
58 -0.488467813584053, -0.390098582530090,
59 -0.494657189446427, 0.054804824897884,
60 -0.370967741935484, 0.236842105263158;
61 ctrls.transposeInPlace();
69 RowVectorXd knots(11);
83 ctrls << 0.959743958516081, 0.340385726666133, 0.585267750979777,
84 0.223811939491137, 0.751267059305653, 0.255095115459269,
85 0.505957051665142, 0.699076722656686, 0.890903252535799,
86 0.959291425205444, 0.547215529963803, 0.138624442828679,
87 0.149294005559057, 0.257508254123736, 0.840717255983663,
88 0.254282178971531, 0.814284826068816, 0.243524968724989,
89 0.929263623187228, 0.349983765984809, 0.196595250431208,
90 0.251083857976031, 0.616044676146639, 0.473288848902729;
91 ctrls.transposeInPlace();
102 u << 0.351659507062997,
114 pts << 0.707620811535916, 0.510258911240815, 0.417485437023409,
115 0.603422256426978, 0.529498282727551, 0.270351549348981,
116 0.228364197569334, 0.423745615677815, 0.637687289287490,
117 0.275556796335168, 0.350856706427970, 0.684295784598905,
118 0.514519311047655, 0.525077224890754, 0.351628308305896,
119 0.724152914315666, 0.574461155457304, 0.469860285484058,
120 0.529365063753288, 0.613328702656816, 0.237837040141739,
121 0.522469395136878, 0.619099658652895, 0.237139665242069,
122 0.677357023849552, 0.480655768435853, 0.422227610314397,
123 0.247046593173758, 0.380604672404750, 0.670065791405019;
124 pts.transposeInPlace();
126 for (
int i=0;
i<u.size(); ++
i)
128 Vector3d
pt = spline(u(
i));
129 VERIFY( (pt - pts.col(
i)).norm() < 1
e-14 );
138 RowVectorXd u = spline.
knots();
141 pts << 0.959743958516081, 0.340385726666133, 0.585267750979777,
142 0.959743958516081, 0.340385726666133, 0.585267750979777,
143 0.959743958516081, 0.340385726666133, 0.585267750979777,
144 0.430282980289940, 0.713074680056118, 0.720373307943349,
145 0.558074875553060, 0.681617921034459, 0.804417124839942,
146 0.407076008291750, 0.349707710518163, 0.617275937419545,
147 0.240037008286602, 0.738739390398014, 0.324554153129411,
148 0.302434111480572, 0.781162443963899, 0.240177089094644,
149 0.251083857976031, 0.616044676146639, 0.473288848902729,
150 0.251083857976031, 0.616044676146639, 0.473288848902729,
151 0.251083857976031, 0.616044676146639, 0.473288848902729;
152 pts.transposeInPlace();
154 for (
int i=0;
i<u.size(); ++
i)
156 Vector3d
pt = spline(u(
i));
157 VERIFY( (pt - pts.col(
i)).norm() < 1
e-14 );
180 pts << -0.370967741935484, 0.236842105263158,
181 -0.152576775123250, 0.448975001279334,
182 -0.133417538277668, 0.461615613865667,
183 -0.053199060826740, 0.507630360006299,
184 0.114249591147281, 0.570414135097409,
185 0.377810316891987, 0.560497102875315,
186 0.665052120135908, -0.157557441109611,
187 0.516006487053228, -0.559763292174825,
188 -0.379486035348887, -0.331959640488223,
189 -0.462034726249078, -0.039105670080824,
190 -0.378730600917982, 0.225127015099919,
191 -0.370967741935484, 0.236842105263158;
192 pts.transposeInPlace();
194 for (
int i=0;
i<u.size(); ++
i)
196 Vector2d
pt = spline(u(
i));
197 VERIFY( (pt - pts.col(
i)).norm() < 1
e-14 );
207 ControlPointVectorType points = ControlPointVectorType::Random(2,100);
209 KnotVectorType chord_lengths;
218 PointType
pt = spline( chord_lengths(
i) );
219 PointType
ref = points.col(
i);
230 PointType
pt = spline( chord_lengths(
i) );
231 PointType
ref = points.col(
i);
243 const unsigned int dimension = 2;
244 const unsigned int degree = 3;
246 ArrayXXd points = ArrayXXd::Random(dimension, numPoints);
248 KnotVectorType knots;
251 ArrayXXd derivatives = ArrayXXd::Random(dimension, numPoints);
252 VectorXd derivativeIndices(numPoints);
255 derivativeIndices(
i) =
static_cast<double>(
i);
258 points, derivatives, derivativeIndices, degree);
262 PointType
point = spline(knots(
i));
263 PointType referencePoint = points.col(
i);
265 PointType derivative = spline.
derivatives(knots(
i), 1).col(1);
266 PointType referenceDerivative = derivatives.col(
i);
A class representing multi-dimensional spline curves.
void eval_spline3d_onbrks()
SplineTraits< Spline >::PointType PointType
The point type the spline is representing.
void eval_closed_spline2d()
Namespace containing all symbols from the Eigen library.
void check_global_interpolation2d()
static const Point3 pt(1.0, 2.0, 3.0)
void ChordLengths(const PointArrayType &pts, KnotVectorType &chord_lengths)
Computes chord length parameters which are required for spline interpolation.
#define VERIFY_IS_APPROX(a, b)
static SplineType InterpolateWithDerivatives(const PointArrayType &points, const PointArrayType &derivatives, const IndexArray &derivativeIndices, const unsigned int degree)
Fits an interpolating spline to the given data points and derivatives.
Array< double, 1, 3 > e(1./3., 0.5, 2.)
const KnotVectorType & knots() const
Returns the knots of the underlying spline.
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
SplineTraits< Spline >::ControlPointVectorType ControlPointVectorType
The data type representing the spline's control points.
static SplineType Interpolate(const PointArrayType &pts, DenseIndex degree)
Fits an interpolating Spline to the given data points.
SplineTraits< Spline >::DerivativeType derivatives(Scalar u, DenseIndex order) const
Evaluation of spline derivatives of up-to given order.
#define CALL_SUBTEST(FUNC)
void check_global_interpolation_with_derivatives2d()
Spline< double, 3, Dynamic > spline3d()
SplineTraits< Spline >::KnotVectorType KnotVectorType
The data type used to store knot vectors.
Spline< double, 2, Dynamic > closed_spline2d()
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)