matrix_power.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "matrix_functions.h"
11 
12 template<typename T>
13 void test2dRotation(const T& tol)
14 {
15  Matrix<T,2,2> A, B, C;
16  T angle, c, s;
17 
18  A << 0, 1, -1, 0;
19  MatrixPower<Matrix<T,2,2> > Apow(A);
20 
21  for (int i=0; i<=20; ++i) {
22  angle = std::pow(T(10), (i-10) / T(5.));
23  c = std::cos(angle);
24  s = std::sin(angle);
25  B << c, s, -s, c;
26 
27  C = Apow(std::ldexp(angle,1) / T(EIGEN_PI));
28  std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n';
29  VERIFY(C.isApprox(B, tol));
30  }
31 }
32 
33 template<typename T>
35 {
36  Matrix<std::complex<T>,2,2> A, B, C;
37  T angle, ch = std::cosh((T)1);
38  std::complex<T> ish(0, std::sinh((T)1));
39 
40  A << ch, ish, -ish, ch;
42 
43  for (int i=0; i<=20; ++i) {
44  angle = std::ldexp(static_cast<T>(i-10), -1);
45  ch = std::cosh(angle);
46  ish = std::complex<T>(0, std::sinh(angle));
47  B << ch, ish, -ish, ch;
48 
49  C = Apow(angle);
50  std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n';
51  VERIFY(C.isApprox(B, tol));
52  }
53 }
54 
55 template<typename T>
56 void test3dRotation(const T& tol)
57 {
59  T angle;
60 
61  for (int i=0; i<=20; ++i) {
63  v.normalize();
64  angle = std::pow(T(10), (i-10) / T(5.));
65  VERIFY(AngleAxis<T>(angle, v).matrix().isApprox(AngleAxis<T>(1,v).matrix().pow(angle), tol));
66  }
67 }
68 
69 template<typename MatrixType>
70 void testGeneral(const MatrixType& m, const typename MatrixType::RealScalar& tol)
71 {
72  typedef typename MatrixType::RealScalar RealScalar;
73  MatrixType m1, m2, m3, m4, m5;
74  RealScalar x, y;
75 
76  for (int i=0; i < g_repeat; ++i) {
78  MatrixPower<MatrixType> mpow(m1);
79 
80  x = internal::random<RealScalar>();
81  y = internal::random<RealScalar>();
82  m2 = mpow(x);
83  m3 = mpow(y);
84 
85  m4 = mpow(x+y);
86  m5.noalias() = m2 * m3;
87  VERIFY(m4.isApprox(m5, tol));
88 
89  m4 = mpow(x*y);
90  m5 = m2.pow(y);
91  VERIFY(m4.isApprox(m5, tol));
92 
93  m4 = (std::abs(x) * m1).pow(y);
94  m5 = std::pow(std::abs(x), y) * m3;
95  VERIFY(m4.isApprox(m5, tol));
96  }
97 }
98 
99 template<typename MatrixType>
100 void testSingular(const MatrixType& m_const, const typename MatrixType::RealScalar& tol)
101 {
102  // we need to pass by reference in order to prevent errors with
103  // MSVC for aligned data types ...
104  MatrixType& m = const_cast<MatrixType&>(m_const);
105 
107  typedef typename internal::conditional<IsComplex, TriangularView<MatrixType,Upper>, const MatrixType&>::type TriangularType;
108  typename internal::conditional< IsComplex, ComplexSchur<MatrixType>, RealSchur<MatrixType> >::type schur;
109  MatrixType T;
110 
111  for (int i=0; i < g_repeat; ++i) {
112  m.setRandom();
113  m.col(0).fill(0);
114 
115  schur.compute(m);
116  T = schur.matrixT();
117  const MatrixType& U = schur.matrixU();
119  MatrixPower<MatrixType> mpow(m);
120 
121  T = T.sqrt();
122  VERIFY(mpow(0.5L).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
123 
124  T = T.sqrt();
125  VERIFY(mpow(0.25L).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
126 
127  T = T.sqrt();
128  VERIFY(mpow(0.125L).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
129  }
130 }
131 
132 template<typename MatrixType>
133 void testLogThenExp(const MatrixType& m_const, const typename MatrixType::RealScalar& tol)
134 {
135  // we need to pass by reference in order to prevent errors with
136  // MSVC for aligned data types ...
137  MatrixType& m = const_cast<MatrixType&>(m_const);
138 
139  typedef typename MatrixType::Scalar Scalar;
140  Scalar x;
141 
142  for (int i=0; i < g_repeat; ++i) {
144  x = internal::random<Scalar>();
145  VERIFY(m.pow(x).isApprox((x * m.log()).exp(), tol));
146  }
147 }
148 
152 
154 {
155  CALL_SUBTEST_2(test2dRotation<double>(1e-13));
156  CALL_SUBTEST_1(test2dRotation<float>(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64
157  CALL_SUBTEST_9(test2dRotation<long double>(1e-13L));
158  CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
159  CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
160  CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14L));
161 
162  CALL_SUBTEST_10(test3dRotation<double>(1e-13));
163  CALL_SUBTEST_11(test3dRotation<float>(1e-5));
164  CALL_SUBTEST_12(test3dRotation<long double>(1e-13L));
165 
166  CALL_SUBTEST_2(testGeneral(Matrix2d(), 1e-13));
167  CALL_SUBTEST_7(testGeneral(Matrix3dRowMajor(), 1e-13));
168  CALL_SUBTEST_3(testGeneral(Matrix4cd(), 1e-13));
169  CALL_SUBTEST_4(testGeneral(MatrixXd(8,8), 2e-12));
170  CALL_SUBTEST_1(testGeneral(Matrix2f(), 1e-4));
171  CALL_SUBTEST_5(testGeneral(Matrix3cf(), 1e-4));
172  CALL_SUBTEST_8(testGeneral(Matrix4f(), 1e-4));
173  CALL_SUBTEST_6(testGeneral(MatrixXf(2,2), 1e-3)); // see bug 614
174  CALL_SUBTEST_9(testGeneral(MatrixXe(7,7), 1e-13L));
175  CALL_SUBTEST_10(testGeneral(Matrix3d(), 1e-13));
176  CALL_SUBTEST_11(testGeneral(Matrix3f(), 1e-4));
177  CALL_SUBTEST_12(testGeneral(Matrix3e(), 1e-13L));
178 
179  CALL_SUBTEST_2(testSingular(Matrix2d(), 1e-13));
180  CALL_SUBTEST_7(testSingular(Matrix3dRowMajor(), 1e-13));
181  CALL_SUBTEST_3(testSingular(Matrix4cd(), 1e-13));
182  CALL_SUBTEST_4(testSingular(MatrixXd(8,8), 2e-12));
183  CALL_SUBTEST_1(testSingular(Matrix2f(), 1e-4));
184  CALL_SUBTEST_5(testSingular(Matrix3cf(), 1e-4));
185  CALL_SUBTEST_8(testSingular(Matrix4f(), 1e-4));
186  CALL_SUBTEST_6(testSingular(MatrixXf(2,2), 1e-3));
187  CALL_SUBTEST_9(testSingular(MatrixXe(7,7), 1e-13L));
188  CALL_SUBTEST_10(testSingular(Matrix3d(), 1e-13));
189  CALL_SUBTEST_11(testSingular(Matrix3f(), 1e-4));
190  CALL_SUBTEST_12(testSingular(Matrix3e(), 1e-13L));
191 
192  CALL_SUBTEST_2(testLogThenExp(Matrix2d(), 1e-13));
193  CALL_SUBTEST_7(testLogThenExp(Matrix3dRowMajor(), 1e-13));
194  CALL_SUBTEST_3(testLogThenExp(Matrix4cd(), 1e-13));
195  CALL_SUBTEST_4(testLogThenExp(MatrixXd(8,8), 2e-12));
196  CALL_SUBTEST_1(testLogThenExp(Matrix2f(), 1e-4));
197  CALL_SUBTEST_5(testLogThenExp(Matrix3cf(), 1e-4));
198  CALL_SUBTEST_8(testLogThenExp(Matrix4f(), 1e-4));
199  CALL_SUBTEST_6(testLogThenExp(MatrixXf(2,2), 1e-3));
200  CALL_SUBTEST_9(testLogThenExp(MatrixXe(7,7), 1e-13L));
201  CALL_SUBTEST_10(testLogThenExp(Matrix3d(), 1e-13));
202  CALL_SUBTEST_11(testLogThenExp(Matrix3f(), 1e-4));
203  CALL_SUBTEST_12(testLogThenExp(Matrix3e(), 1e-13L));
204 }
Matrix3f m
void testGeneral(const MatrixType &m, const typename MatrixType::RealScalar &tol)
SCALAR Scalar
Definition: bench_gemm.cpp:33
ComplexSchur< MatrixXcf > schur(4)
void test3dRotation(const T &tol)
Class for computing matrix powers.
Definition: MatrixPower.h:15
Scalar * y
#define EIGEN_PI
EIGEN_DEVICE_FUNC const ExpReturnType exp() const
MatrixType m2(n_dims)
Matrix< double, 3, 3, RowMajor > Matrix3dRowMajor
const mpreal ldexp(const mpreal &v, mp_exp_t exp)
Definition: mpreal.h:2020
ArrayXcf v
Definition: Cwise_arg.cpp:1
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
EIGEN_DEVICE_FUNC const CoshReturnType cosh() const
MatrixXd L
Definition: LLT_example.cpp:6
MatrixXf MatrixType
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:150
Matrix< SCALARA, Dynamic, Dynamic > A
Definition: bench_gemm.cpp:35
void test_matrix_power()
Matrix< long double, 3, 3 > Matrix3e
Derived::RealScalar relerr(const MatrixBase< Derived > &A, const MatrixBase< OtherDerived > &B)
Matrix< SCALARB, Dynamic, Dynamic > B
Definition: bench_gemm.cpp:36
void test2dHyperbolicRotation(const T &tol)
void testSingular(const MatrixType &m_const, const typename MatrixType::RealScalar &tol)
void testLogThenExp(const MatrixType &m_const, const typename MatrixType::RealScalar &tol)
EIGEN_DEVICE_FUNC const CosReturnType cos() const
const StorageIndex & col() const
Definition: SparseUtil.h:167
internal::enable_if< !(internal::is_same< typename Derived::Scalar, ScalarExponent >::value)&&EIGEN_SCALAR_BINARY_SUPPORTED(pow, typename Derived::Scalar, ScalarExponent), const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived, ScalarExponent, pow) >::type pow(const Eigen::ArrayBase< Derived > &x, const ScalarExponent &exponent)
Matrix3d m1
Definition: IOFormat.cpp:2
EIGEN_DEVICE_FUNC const SinhReturnType sinh() const
static int g_repeat
Definition: main.h:144
Eigen::Triplet< double > T
Array< double, 1, 3 > e(1./3., 0.5, 2.)
RealScalar s
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:34
Matrix< Scalar, Dynamic, Dynamic > C
Definition: bench_gemm.cpp:37
#define VERIFY(a)
Definition: main.h:325
void test2dRotation(const T &tol)
EIGEN_DEVICE_FUNC const SinReturnType sin() const
const G double tol
Definition: Group.h:83
static void run(MatrixType &, MatrixType &, const MatrixType &)
Jet< T, N > pow(const Jet< T, N > &f, double g)
Definition: jet.h:570
Matrix< long double, Dynamic, Dynamic > MatrixXe
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
The matrix class, also used for vectors and row-vectors.
EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
void run(Expr &expr, Dev &dev)
Definition: TensorSyclRun.h:33
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
#define abs(x)
Definition: datatypes.h:17
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:42:50