Public Types | Public Member Functions | Private Member Functions | Private Attributes | List of all members
NETGeographicLib::GeodesicLine Class Reference

.NET wrapper for GeographicLib::GeodesicLine. More...

#include <GeodesicLine.h>

Public Types

enum  mask {
  mask::NONE, mask::LATITUDE, mask::LONGITUDE, mask::AZIMUTH,
  mask::DISTANCE, mask::DISTANCE_IN, mask::REDUCEDLENGTH, mask::GEODESICSCALE,
  mask::AREA, mask::LONG_UNROLL, mask::ALL
}
 

Public Member Functions

 ~GeodesicLine ()
 
Constructors
 GeodesicLine (Geodesic^g, double lat1, double lon1, double azi1, NETGeographicLib::Mask caps)
 
 GeodesicLine (double lat1, double lon1, double azi1, NETGeographicLib::Mask caps)
 
 GeodesicLine (const GeographicLib::GeodesicLine &gl)
 
Position in terms of distance
double Position (double s12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%m12, [System::Runtime::InteropServices::Out] double%M12, [System::Runtime::InteropServices::Out] double%M21, [System::Runtime::InteropServices::Out] double%S12)
 
double Position (double s12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2)
 
double Position (double s12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2)
 
double Position (double s12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%m12)
 
double Position (double s12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%M12, [System::Runtime::InteropServices::Out] double%M21)
 
double Position (double s12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%m12, [System::Runtime::InteropServices::Out] double%M12, [System::Runtime::InteropServices::Out] double%M21)
 
Position in terms of arc length
void ArcPosition (double a12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%s12, [System::Runtime::InteropServices::Out] double%m12, [System::Runtime::InteropServices::Out] double%M12, [System::Runtime::InteropServices::Out] double%M21, [System::Runtime::InteropServices::Out] double%S12)
 
void ArcPosition (double a12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2)
 
void ArcPosition (double a12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2)
 
void ArcPosition (double a12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%s12)
 
void ArcPosition (double a12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%s12, [System::Runtime::InteropServices::Out] double%m12)
 
void ArcPosition (double a12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%s12, [System::Runtime::InteropServices::Out] double%M12, [System::Runtime::InteropServices::Out] double%M21)
 
void ArcPosition (double a12, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%s12, [System::Runtime::InteropServices::Out] double%m12, [System::Runtime::InteropServices::Out] double%M12, [System::Runtime::InteropServices::Out] double%M21)
 
The general position function.
double GenPosition (bool arcmode, double s12_a12, GeodesicLine::mask outmask, [System::Runtime::InteropServices::Out] double%lat2, [System::Runtime::InteropServices::Out] double%lon2, [System::Runtime::InteropServices::Out] double%azi2, [System::Runtime::InteropServices::Out] double%s12, [System::Runtime::InteropServices::Out] double%m12, [System::Runtime::InteropServices::Out] double%M12, [System::Runtime::InteropServices::Out] double%M21, [System::Runtime::InteropServices::Out] double%S12)
 
Setting point 3
void SetDistance (double s13)
 
void SetArc (double a13)
 
void GenSetDistance (bool arcmode, double s13_a13)
 
Trigonometric accessor functions
void AzimuthSinCos ([System::Runtime::InteropServices::Out] double%sazi1, [System::Runtime::InteropServices::Out] double%cazi1)
 
void EquatorialAzimuthSinCos ([System::Runtime::InteropServices::Out] double%sazi0, [System::Runtime::InteropServices::Out] double%cazi0)
 
double GenDistance (bool arcmode)
 

Private Member Functions

 !GeodesicLine (void)
 

Private Attributes

GeographicLib::GeodesicLinem_pGeodesicLine
 

Inspector functions

property double Latitude { double get()
 
property double Longitude { double get()
 
property double Azimuth { double get()
 
property double EquatorialAzimuth { double get()
 
property double EquatorialArc { double get()
 
property double MajorRadius { double get()
 
property double Flattening { double get()
 
property double Distance { double get()
 
property double Arc { double get()
 
NETGeographicLib::Mask Capabilities ()
 
bool Capabilities (GeodesicLine::mask testcaps)
 

Detailed Description

.NET wrapper for GeographicLib::GeodesicLine.

This class allows .NET applications to access GeographicLib::GeodesicLine.

GeodesicLine facilitates the determination of a series of points on a single geodesic. The starting point (lat1, lon1) and the azimuth azi1 are specified in the constructor. GeodesicLine.Position returns the location of point 2 a distance s12 along the geodesic. Alternatively GeodesicLine.ArcPosition gives the position of point 2 an arc length a12 along the geodesic.

The default copy constructor and assignment operators work with this class. Similarly, a vector can be used to hold GeodesicLine objects.

The calculations are accurate to better than 15 nm (15 nanometers). See Sec. 9 of arXiv:1102.1215v1 for details. The algorithms used by this class are based on series expansions using the flattening f as a small parameter. These are only accurate for |f| < 0.02; however reasonably accurate results will be obtained for |f| < 0.2. For very eccentric ellipsoids, use GeodesicLineExact instead.

The algorithms are described in

For more information on geodesics see geodesic.

C# Example:

using System;
namespace example_GeodesicLine
{
class Program
{
static void Main(string[] args)
{
try
{
// Print waypoints between JFK and SIN
Geodesic geod = new Geodesic(); // WGS84
double
lat1 = 40.640, lon1 = -73.779, // JFK
lat2 = 1.359, lon2 = 103.989; // SIN
double s12, azi1, azi2,
a12 = geod.Inverse(lat1, lon1, lat2, lon2, out s12, out azi1, out azi2);
GeodesicLine line = new GeodesicLine(geod, lat1, lon1, azi1, Mask.ALL);
// Alternatively GeodesicLine line = geod.Line(lat1, lon1, azi1, Mask.ALL);
double ds = 500e3; // Nominal distance between points = 500 km
int num = (int)(Math.Ceiling(s12 / ds)); // The number of intervals
{
// Use intervals of equal length
ds = s12 / num;
for (int i = 0; i <= num; ++i)
{
double lat, lon;
line.Position(i * ds, out lat, out lon);
Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon));
}
}
{
// Slightly faster, use intervals of equal arc length
double da = a12 / num;
for (int i = 0; i <= num; ++i)
{
double lat, lon;
line.ArcPosition(i * da, out lat, out lon);
Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon));
}
}
}
catch (GeographicErr e)
{
Console.WriteLine(String.Format("Caught exception: {0}", e.Message));
}
}
}
}

Managed C++ Example:

// Example of using the GeographicLib::GeodesicLine class
#include <iostream>
#include <iomanip>
#include <exception>
#include <cmath>
using namespace std;
using namespace GeographicLib;
int main() {
try {
// Print waypoints between JFK and SIN
Geodesic geod(Constants::WGS84_a(), Constants::WGS84_f());
// Alternatively: const Geodesic& geod = Geodesic::WGS84();
double
lat1 = 40.640, lon1 = -73.779, // JFK
lat2 = 1.359, lon2 = 103.989; // SIN
geod.InverseLine(lat1, lon1, lat2, lon2);
double ds0 = 500e3; // Nominal distance between points = 500 km
int num = int(ceil(line.Distance() / ds0)); // The number of intervals
cout << fixed << setprecision(3);
{
// Use intervals of equal length
double ds = line.Distance() / num;
for (int i = 0; i <= num; ++i) {
double lat, lon;
line.Position(i * ds, lat, lon);
cout << i << " " << lat << " " << lon << "\n";
}
}
{
// Slightly faster, use intervals of equal arc length
double da = line.Arc() / num;
for (int i = 0; i <= num; ++i) {
double lat, lon;
line.ArcPosition(i * da, lat, lon);
cout << i << " " << lat << " " << lon << "\n";
}
}
}
catch (const exception& e) {
cerr << "Caught exception: " << e.what() << "\n";
return 1;
}
}

Visual Basic Example:

Imports NETGeographicLib
Module example_GeodesicLine
Sub Main()
Try
' Print waypoints between JFK and SIN
Dim geod As Geodesic = New Geodesic() ' WGS84
Dim lat1 As Double = 40.64, lon1 = -73.779 ' JFK
Dim lat2 As Double = 1.359, lon2 = 103.989 ' SIN
Dim s12, azi1, azi2 As Double
Dim a12 As Double = geod.Inverse(lat1, lon1, lat2, lon2, s12, azi1, azi2)
Dim line As GeodesicLine = New GeodesicLine(geod, lat1, lon1, azi1, Mask.ALL)
' Alternatively Dim line As GeodesicLineExact = geod.Line(lat1, lon1, azi1, Mask.ALL)
Dim ds As Double = 500000.0 ' Nominal distance between points = 500 km
Dim num As Integer = CInt(Math.Ceiling(s12 / ds)) ' The number of intervals
' Use intervals of equal length
ds = s12 / num
For i As Integer = 0 To num
Dim lat, lon As Double
line.Position(i * ds, lat, lon)
Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon))
Next
' Slightly faster, use intervals of equal arc length
Dim da As Double = a12 / num
For i As Integer = 0 To num
Dim lat, lon As Double
line.ArcPosition(i * da, lat, lon)
Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon))
Next
Catch ex As GeographicErr
Console.WriteLine(String.Format("Caught exception: {0}", ex.Message))
End Try
End Sub
End Module

INTERFACE DIFFERENCES:
A constructor has been provided which assumes WGS84 parameters.

The following functions are implemented as properties: Latitude, Longitude, Azimuth, EquatorialAzimuth, EquatorialArc, MajorRadius, Distance, Arc, and Flattening.

The constructors, Capabilities, and GenPosition functions accept the "capabilities mask" as a NETGeographicLib::Mask rather than an unsigned. The Capabilities function returns a NETGeographicLib::Mask rather than an unsigned.

The overloaded Azimuth and EquatorialAzimuth functions that return the sin and cosine terms have been renamed AzimuthSinCos and EquatorialAzimuthSinCos, repectively.

Definition at line 75 of file GeodesicLine.h.

Member Enumeration Documentation

Bit masks for what calculations to do. They signify to the GeodesicLine::GeodesicLine constructor and to Geodesic::Line what capabilities should be included in the GeodesicLine object. This is merely a duplication of Geodesic::mask.

Enumerator
NONE 

No capabilities, no output.

LATITUDE 

Calculate latitude lat2. (It's not necessary to include this as a capability to GeodesicLine because this is included by default.)

LONGITUDE 

Calculate longitude lon2.

AZIMUTH 

Calculate azimuths azi1 and azi2. (It's not necessary to include this as a capability to GeodesicLine because this is included by default.)

DISTANCE 

Calculate distance s12.

DISTANCE_IN 

Allow distance s12 to be used as input in the direct geodesic problem.

REDUCEDLENGTH 

Calculate reduced length m12.

GEODESICSCALE 

Calculate geodesic scales M12 and M21.

AREA 

Calculate area S12.

LONG_UNROLL 

Unroll lon2 in the direct calculation.

ALL 

All capabilities, calculate everything. (LONG_UNROLL is not included in this mask.)

Definition at line 91 of file GeodesicLine.h.

Constructor & Destructor Documentation

GeodesicLine::!GeodesicLine ( void  )
private

Definition at line 21 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

GeodesicLine::GeodesicLine ( Geodesic g,
double  lat1,
double  lon1,
double  azi1,
NETGeographicLib::Mask  caps 
)

Constructor for a geodesic line staring at latitude lat1, longitude lon1, and azimuth azi1 (all in degrees).

Parameters
[in]gA Geodesic object used to compute the necessary information about the GeodesicLine.
[in]lat1latitude of point 1 (degrees).
[in]lon1longitude of point 1 (degrees).
[in]azi1azimuth at point 1 (degrees).
[in]capsbitor'ed combination of NETGeographicLib::Mask values specifying the capabilities the GeodesicLine object should possess, i.e., which quantities can be returned in calls to GeodesicLine::Position.

lat1 should be in the range [−90°, 90°].

The NETGeographicLib::Mask values are

The default value of caps is GeodesicLine::ALL.

If the point is at a pole, the azimuth is defined by keeping lon1 fixed, writing lat1 = ±(90° − ε), and taking the limit ε → 0+.

Definition at line 31 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

GeodesicLine::GeodesicLine ( double  lat1,
double  lon1,
double  azi1,
NETGeographicLib::Mask  caps 
)

A constructor which assumes the WGS84 ellipsoid.

Definition at line 62 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

GeodesicLine::GeodesicLine ( const GeographicLib::GeodesicLine gl)

A constructoe that accepts a reference to an unmanages GeodesicLin. FOR INTERNAL USE ONLY

Definition at line 49 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

NETGeographicLib::GeodesicLine::~GeodesicLine ( )
inline

The destructor calls the finalizer.

Definition at line 214 of file GeodesicLine.h.

Member Function Documentation

void GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  s12,
[System::Runtime::InteropServices::Out] double%  m12,
[System::Runtime::InteropServices::Out] double%  M12,
[System::Runtime::InteropServices::Out] double%  M21,
[System::Runtime::InteropServices::Out] double%  S12 
)

Compute the position of point 2 which is an arc length a12 (degrees) from point 1.

Parameters
[in]a12arc length between point 1 and point 2 (degrees); it can be negative.
[out]lat2latitude of point 2 (degrees).
[out]lon2longitude of point 2 (degrees); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::LONGITUDE.
[out]azi2(forward) azimuth at point 2 (degrees).
[out]s12distance between point 1 and point 2 (meters); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::DISTANCE.
[out]m12reduced length of geodesic (meters); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::REDUCEDLENGTH.
[out]M12geodesic scale of point 2 relative to point 1 (dimensionless); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::GEODESICSCALE.
[out]M21geodesic scale of point 1 relative to point 2 (dimensionless); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::GEODESICSCALE.
[out]S12area under the geodesic (meters2); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::AREA.

The values of lon2 and azi2 returned are in the range [−180°, 180°).

Requesting a value which the GeodesicLine object is not capable of computing is not an error; the corresponding argument will not be altered.

The following functions are overloaded versions of GeodesicLine::ArcPosition which omit some of the output parameters.

Definition at line 184 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2 
)

See the documentation for GeodesicLine::ArcPosition.

Definition at line 208 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2 
)

See the documentation for GeodesicLine::ArcPosition.

Definition at line 219 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  s12 
)

See the documentation for GeodesicLine::ArcPosition.

Definition at line 232 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  s12,
[System::Runtime::InteropServices::Out] double%  m12 
)

See the documentation for GeodesicLine::ArcPosition.

Definition at line 247 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  s12,
[System::Runtime::InteropServices::Out] double%  M12,
[System::Runtime::InteropServices::Out] double%  M21 
)

See the documentation for GeodesicLine::ArcPosition.

Definition at line 264 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  s12,
[System::Runtime::InteropServices::Out] double%  m12,
[System::Runtime::InteropServices::Out] double%  M12,
[System::Runtime::InteropServices::Out] double%  M21 
)

See the documentation for GeodesicLine::ArcPosition.

Definition at line 284 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::AzimuthSinCos ( [System::Runtime::InteropServices::Out] double%  sazi1,
[System::Runtime::InteropServices::Out] double%  cazi1 
)

The sine and cosine of azi1.

Parameters
[out]sazi1the sine of azi1.
[out]cazi1the cosine of azi1.

Definition at line 386 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

NETGeographicLib::Mask GeodesicLine::Capabilities ( )
Returns
caps the computational capabilities that this object was constructed with. LATITUDE and AZIMUTH are always included.

Definition at line 366 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

bool GeodesicLine::Capabilities ( GeodesicLine::mask  testcaps)
Parameters
[in]testcapsa set of bitor'ed GeodesicLine::mask values.
Returns
true if the GeodesicLine object has all these capabilities.

Definition at line 370 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::EquatorialAzimuthSinCos ( [System::Runtime::InteropServices::Out] double%  sazi0,
[System::Runtime::InteropServices::Out] double%  cazi0 
)

The sine and cosine of azi0.

Parameters
[out]sazi0the sine of azi0.
[out]cazi0the cosine of azi0.

Definition at line 395 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

double GeodesicLine::GenDistance ( bool  arcmode)

The distance or arc length to point 3.

Parameters
[in]arcmodeboolean flag determining the meaning of returned value.
Returns
s13 if arcmode is false; a13 if arcmode is true.

Definition at line 404 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

double GeodesicLine::GenPosition ( bool  arcmode,
double  s12_a12,
GeodesicLine::mask  outmask,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  s12,
[System::Runtime::InteropServices::Out] double%  m12,
[System::Runtime::InteropServices::Out] double%  M12,
[System::Runtime::InteropServices::Out] double%  M21,
[System::Runtime::InteropServices::Out] double%  S12 
)

The general position function. GeodesicLine::Position and GeodesicLine::ArcPosition are defined in terms of this function.

Parameters
[in]arcmodeboolean flag determining the meaning of the second parameter; if arcmode is false, then the GeodesicLine object must have been constructed with caps |= GeodesicLine::DISTANCE_IN.
[in]s12_a12if arcmode is false, this is the distance between point 1 and point 2 (meters); otherwise it is the arc length between point 1 and point 2 (degrees); it can be negative.
[in]outmaska bitor'ed combination of GeodesicLine::mask values specifying which of the following parameters should be set.
[out]lat2latitude of point 2 (degrees).
[out]lon2longitude of point 2 (degrees); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::LONGITUDE.
[out]azi2(forward) azimuth at point 2 (degrees).
[out]s12distance between point 1 and point 2 (meters); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::DISTANCE.
[out]m12reduced length of geodesic (meters); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::REDUCEDLENGTH.
[out]M12geodesic scale of point 2 relative to point 1 (dimensionless); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::GEODESICSCALE.
[out]M21geodesic scale of point 1 relative to point 2 (dimensionless); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::GEODESICSCALE.
[out]S12area under the geodesic (meters2); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::AREA.
Returns
a12 arc length of between point 1 and point 2 (degrees).

The GeodesicLine::mask values possible for outmask are

Requesting a value which the GeodesicLine object is not capable of computing is not an error; the corresponding argument will not be altered. Note, however, that the arc length is always computed and returned as the function value.

With the LONG_UNROLL bit set, the quantity lon2lon1 indicates how many times and in what sense the geodesic encircles the ellipsoid.

Definition at line 306 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::GenSetDistance ( bool  arcmode,
double  s13_a13 
)

Specify position of point 3 in terms of either distance or arc length.

Parameters
[in]arcmodeboolean flag determining the meaning of the second parameter; if arcmode is false, then the GeodesicLine object must have been constructed with caps |= GeodesicLine::DISTANCE_IN.
[in]s13_a13if arcmode is false, this is the distance from point 1 to point 3 (meters); otherwise it is the arc length from point 1 to point 3 (degrees); it can be negative.

Definition at line 382 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

double GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  m12,
[System::Runtime::InteropServices::Out] double%  M12,
[System::Runtime::InteropServices::Out] double%  M21,
[System::Runtime::InteropServices::Out] double%  S12 
)

Compute the position of point 2 which is a distance s12 (meters) from point 1.

Parameters
[in]s12distance between point 1 and point 2 (meters); it can be negative.
[out]lat2latitude of point 2 (degrees).
[out]lon2longitude of point 2 (degrees); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::LONGITUDE.
[out]azi2(forward) azimuth at point 2 (degrees).
[out]m12reduced length of geodesic (meters); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::REDUCEDLENGTH.
[out]M12geodesic scale of point 2 relative to point 1 (dimensionless); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::GEODESICSCALE.
[out]M21geodesic scale of point 1 relative to point 2 (dimensionless); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::GEODESICSCALE.
[out]S12area under the geodesic (meters2); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::AREA.
Returns
a12 arc length of between point 1 and point 2 (degrees).

The values of lon2 and azi2 returned are in the range [−180°, 180°).

The GeodesicLine object must have been constructed with caps |= GeodesicLine::DISTANCE_IN; otherwise Math::NaN() is returned and no parameters are set. Requesting a value which the GeodesicLine object is not capable of computing is not an error; the corresponding argument will not be altered.

The following functions are overloaded versions of GeodesicLine::Position which omit some of the output parameters. Note, however, that the arc length is always computed and returned as the function value.

Definition at line 78 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

double GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2 
)

See the documentation for GeodesicLine::Position.

Definition at line 101 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

double GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2 
)

See the documentation for GeodesicLine::Position.

Definition at line 113 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

double GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  m12 
)

See the documentation for GeodesicLine::Position.

Definition at line 127 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

double GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  M12,
[System::Runtime::InteropServices::Out] double%  M21 
)

See the documentation for GeodesicLine::Position.

Definition at line 144 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

double GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%  lat2,
[System::Runtime::InteropServices::Out] double%  lon2,
[System::Runtime::InteropServices::Out] double%  azi2,
[System::Runtime::InteropServices::Out] double%  m12,
[System::Runtime::InteropServices::Out] double%  M12,
[System::Runtime::InteropServices::Out] double%  M21 
)

See the documentation for GeodesicLine::Position.

Definition at line 163 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::SetArc ( double  a13)

Specify position of point 3 in terms of arc length.

Parameters
[in]a13the arc length from point 1 to point 3 (degrees); it can be negative.

The distance s13 is only set if the GeodesicLine object has been constructed with caps |= GeodesicLine::DISTANCE.

Definition at line 378 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

void GeodesicLine::SetDistance ( double  s13)

Specify position of point 3 in terms of distance.

Parameters
[in]s13the distance from point 1 to point 3 (meters); it can be negative.

This is only useful if the GeodesicLine object has been constructed with caps |= GeodesicLine::DISTANCE_IN.

Definition at line 374 of file dotnet/NETGeographicLib/GeodesicLine.cpp.

Member Data Documentation

property double NETGeographicLib::GeodesicLine::Arc { double get()
Returns
a13, the arc length to point 3 (degrees).

Definition at line 621 of file GeodesicLine.h.

property double NETGeographicLib::GeodesicLine::Azimuth { double get()
Returns
azi1 the azimuth (degrees) of the geodesic line at point 1.

Definition at line 587 of file GeodesicLine.h.

property double NETGeographicLib::GeodesicLine::Distance { double get()
Returns
s13, the distance to point 3 (meters).

Definition at line 616 of file GeodesicLine.h.

property double NETGeographicLib::GeodesicLine::EquatorialArc { double get()
Returns
a1 the arc length (degrees) between the northward equatorial crossing and point 1.

Definition at line 599 of file GeodesicLine.h.

property double NETGeographicLib::GeodesicLine::EquatorialAzimuth { double get()
Returns
azi0 the azimuth (degrees) of the geodesic line as it crosses the equator in a northward direction.

Definition at line 593 of file GeodesicLine.h.

property double NETGeographicLib::GeodesicLine::Flattening { double get()
Returns
f the flattening of the ellipsoid. This is the value inherited from the Geodesic object used in the constructor.

Definition at line 611 of file GeodesicLine.h.

property double NETGeographicLib::GeodesicLine::Latitude { double get()
Returns
lat1 the latitude of point 1 (degrees).

Definition at line 577 of file GeodesicLine.h.

property double NETGeographicLib::GeodesicLine::Longitude { double get()
Returns
lon1 the longitude of point 1 (degrees).

Definition at line 582 of file GeodesicLine.h.

GeographicLib::GeodesicLine* NETGeographicLib::GeodesicLine::m_pGeodesicLine
private

Definition at line 79 of file GeodesicLine.h.

property double NETGeographicLib::GeodesicLine::MajorRadius { double get()
Returns
a the equatorial radius of the ellipsoid (meters). This is the value inherited from the Geodesic object used in the constructor.

Definition at line 605 of file GeodesicLine.h.


The documentation for this class was generated from the following files:


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:59:11