Public Member Functions | Private Member Functions | Private Attributes | List of all members
NETGeographicLib::Geocentric Class Reference

.NET wrapper for GeographicLib::Geocentric. More...

#include <Geocentric.h>

Public Member Functions

void Forward (double lat, double lon, double h, [System::Runtime::InteropServices::Out] double%X, [System::Runtime::InteropServices::Out] double%Y, [System::Runtime::InteropServices::Out] double%Z)
 
void Forward (double lat, double lon, double h, [System::Runtime::InteropServices::Out] double%X, [System::Runtime::InteropServices::Out] double%Y, [System::Runtime::InteropServices::Out] double%Z, [System::Runtime::InteropServices::Out] array< double, 2 >^%M)
 
 Geocentric (double a, double f)
 
 Geocentric ()
 
 Geocentric (const GeographicLib::Geocentric &g)
 
void Reverse (double X, double Y, double Z, [System::Runtime::InteropServices::Out] double%lat, [System::Runtime::InteropServices::Out] double%lon, [System::Runtime::InteropServices::Out] double%h)
 
void Reverse (double X, double Y, double Z, [System::Runtime::InteropServices::Out] double%lat, [System::Runtime::InteropServices::Out] double%lon, [System::Runtime::InteropServices::Out] double%h, [System::Runtime::InteropServices::Out] array< double, 2 >^%M)
 
 ~Geocentric ()
 

Private Member Functions

 !Geocentric ()
 

Private Attributes

const GeographicLib::Geocentricm_pGeocentric
 

Inspector functions

property double MajorRadius { double get()
 
property double Flattening { double get()
 
System::IntPtr GetUnmanaged ()
 

Detailed Description

.NET wrapper for GeographicLib::Geocentric.

This class allows .NET applications to access GeographicLib::Geocentric.

Convert between geodetic coordinates latitude = lat, longitude = lon, height = h (measured vertically from the surface of the ellipsoid) to geocentric coordinates (X, Y, Z). The origin of geocentric coordinates is at the center of the earth. The Z axis goes thru the north pole, lat = 90°. The X axis goes thru lat = 0, lon = 0. Geocentric coordinates are also known as earth centered, earth fixed (ECEF) coordinates.

The conversion from geographic to geocentric coordinates is straightforward. For the reverse transformation we use

Several changes have been made to ensure that the method returns accurate results for all finite inputs (even if h is infinite). The changes are described in Appendix B of

See geocentric for more information.

The errors in these routines are close to round-off. Specifically, for points within 5000 km of the surface of the ellipsoid (either inside or outside the ellipsoid), the error is bounded by 7 nm (7 nanometers) for the WGS84 ellipsoid. See geocentric for further information on the errors.

C# Example:

using System;
namespace example_Geocentric
{
class Program
{
static void Main(string[] args)
{
try {
Geocentric earth = new Geocentric( Constants.WGS84.MajorRadius,
Constants.WGS84.Flattening);
// Alternatively: Geocentric earth = new Geocentric();
{
// Sample forward calculation
double lat = 27.99, lon = 86.93, h = 8820; // Mt Everest
double X, Y, Z;
earth.Forward(lat, lon, h, out X, out Y, out Z);
Console.WriteLine( String.Format( "{0} {1} {2}",
Math.Floor(X / 1000 + 0.5),
Math.Floor(Y / 1000 + 0.5),
Math.Floor(Z / 1000 + 0.5) ) );
}
{
// Sample reverse calculation
double X = 302e3, Y = 5636e3, Z = 2980e3;
double lat, lon, h;
earth.Reverse(X, Y, Z, out lat, out lon, out h);
Console.WriteLine(String.Format("{0} {1} {2}", lat, lon, h));
}
}
catch (GeographicErr e) {
Console.WriteLine( String.Format( "Caught exception: {0}", e.Message ) );
}
}
}
}

Managed C++ Example:

// Example of using the GeographicLib::Geocentric class
#include <iostream>
#include <exception>
#include <cmath>
using namespace std;
using namespace GeographicLib;
int main() {
try {
Geocentric earth(Constants::WGS84_a(), Constants::WGS84_f());
// Alternatively: const Geocentric& earth = Geocentric::WGS84();
{
// Sample forward calculation
double lat = 27.99, lon = 86.93, h = 8820; // Mt Everest
double X, Y, Z;
earth.Forward(lat, lon, h, X, Y, Z);
cout << floor(X / 1000 + 0.5) << " "
<< floor(Y / 1000 + 0.5) << " "
<< floor(Z / 1000 + 0.5) << "\n";
}
{
// Sample reverse calculation
double X = 302e3, Y = 5636e3, Z = 2980e3;
double lat, lon, h;
earth.Reverse(X, Y, Z, lat, lon, h);
cout << lat << " " << lon << " " << h << "\n";
}
}
catch (const exception& e) {
cerr << "Caught exception: " << e.what() << "\n";
return 1;
}
}

Visual Basic Example:

Imports NETGeographicLib
Module example_Geocentric
Sub Main()
Try
Dim earth As Geocentric = New Geocentric(Constants.WGS84.MajorRadius,
Constants.WGS84.Flattening)
' Alternatively: Geocentric earth = new Geocentric();
' Sample forward calculation
Dim lat As Double = 27.99, lon = 86.93, h = 8820 ' Mt Everest
Dim X, Y, Z As Double
earth.Forward(lat, lon, h, X, Y, Z)
Console.WriteLine(String.Format("{0} {1} {2}",
Math.Floor(X / 1000 + 0.5),
Math.Floor(Y / 1000 + 0.5),
Math.Floor(Z / 1000 + 0.5)))
' Sample reverse calculation
X = 302000.0 : Y = 5636000.0 : Z = 2980000.0
earth.Reverse(X, Y, Z, lat, lon, h)
Console.WriteLine(String.Format("{0} {1} {2}", lat, lon, h))
Catch ex As GeographicErr
Console.WriteLine(String.Format("Caught exception: {0}", ex.Message))
End Try
End Sub
End Module

INTERFACE DIFFERENCES:
A default constructor is provided that assumes WGS84 parameters.

The MajorRadius and Flattening functions are implemented as properties.

The Forward and Reverse functions return rotation matrices as 2D, 3 × 3 arrays rather than vectors.

Definition at line 68 of file Geocentric.h.

Constructor & Destructor Documentation

Geocentric::!Geocentric ( )
private

Definition at line 21 of file dotnet/NETGeographicLib/Geocentric.cpp.

Geocentric::Geocentric ( double  a,
double  f 
)

Constructor for a ellipsoid with

Parameters
[in]aequatorial radius (meters).
[in]fflattening of ellipsoid. Setting f = 0 gives a sphere. Negative f gives a prolate ellipsoid.
Exceptions
GeographicErrif a or (1 − f ) a is not positive.

Definition at line 45 of file dotnet/NETGeographicLib/Geocentric.cpp.

Geocentric::Geocentric ( void  )

A default constructor which assumes WGS84.

Definition at line 31 of file dotnet/NETGeographicLib/Geocentric.cpp.

Geocentric::Geocentric ( const GeographicLib::Geocentric g)

A constructor that is initialized from an unmanaged GeographicLib::Geocentric. For internal use only.

Parameters
[in]gAn existing GeographicLib::Geocentric.

Definition at line 62 of file dotnet/NETGeographicLib/Geocentric.cpp.

NETGeographicLib::Geocentric::~Geocentric ( )
inline

The destructor calls the finalizer.

Definition at line 103 of file Geocentric.h.

Member Function Documentation

void Geocentric::Forward ( double  lat,
double  lon,
double  h,
[System::Runtime::InteropServices::Out] double%  X,
[System::Runtime::InteropServices::Out] double%  Y,
[System::Runtime::InteropServices::Out] double%  Z 
)

Convert from geodetic to geocentric coordinates.

Parameters
[in]latlatitude of point (degrees).
[in]lonlongitude of point (degrees).
[in]hheight of point above the ellipsoid (meters).
[out]Xgeocentric coordinate (meters).
[out]Ygeocentric coordinate (meters).
[out]Zgeocentric coordinate (meters).

lat should be in the range [−90°, 90°].

Definition at line 75 of file dotnet/NETGeographicLib/Geocentric.cpp.

void Geocentric::Forward ( double  lat,
double  lon,
double  h,
[System::Runtime::InteropServices::Out] double%  X,
[System::Runtime::InteropServices::Out] double%  Y,
[System::Runtime::InteropServices::Out] double%  Z,
[System::Runtime::InteropServices::Out] array< double, 2 >^%  M 
)

Convert from geodetic to geocentric coordinates and return rotation matrix.

Parameters
[in]latlatitude of point (degrees).
[in]lonlongitude of point (degrees).
[in]hheight of point above the ellipsoid (meters).
[out]Xgeocentric coordinate (meters).
[out]Ygeocentric coordinate (meters).
[out]Zgeocentric coordinate (meters).
[out]Ma 3 × 3 rotation matrix.

Let v be a unit vector located at (lat, lon, h). We can express v as column vectors in one of two ways

  • in east, north, up coordinates (where the components are relative to a local coordinate system at (lat, lon, h)); call this representation v1.
  • in geocentric X, Y, Z coordinates; call this representation v0.

Then we have v0 = Mv1.

Definition at line 88 of file dotnet/NETGeographicLib/Geocentric.cpp.

System::IntPtr Geocentric::GetUnmanaged ( )
Returns
a pointer to the unmanaged GeographicLib::Geocentric.

Definition at line 139 of file dotnet/NETGeographicLib/Geocentric.cpp.

void Geocentric::Reverse ( double  X,
double  Y,
double  Z,
[System::Runtime::InteropServices::Out] double%  lat,
[System::Runtime::InteropServices::Out] double%  lon,
[System::Runtime::InteropServices::Out] double%  h 
)

Convert from geocentric to geodetic to coordinates.

Parameters
[in]Xgeocentric coordinate (meters).
[in]Ygeocentric coordinate (meters).
[in]Zgeocentric coordinate (meters).
[out]latlatitude of point (degrees).
[out]lonlongitude of point (degrees).
[out]hheight of point above the ellipsoid (meters).

In general there are multiple solutions and the result which maximizes h is returned. If there are still multiple solutions with different latitudes (applies only if Z = 0), then the solution with lat > 0 is returned. If there are still multiple solutions with different longitudes (applies only if X = Y = 0) then lon = 0 is returned. The value of h returned satisfies h ≥ − a (1 − e2) / sqrt(1 − e2 sin2lat). The value of lon returned is in the range [−180°, 180°).

Definition at line 107 of file dotnet/NETGeographicLib/Geocentric.cpp.

void Geocentric::Reverse ( double  X,
double  Y,
double  Z,
[System::Runtime::InteropServices::Out] double%  lat,
[System::Runtime::InteropServices::Out] double%  lon,
[System::Runtime::InteropServices::Out] double%  h,
[System::Runtime::InteropServices::Out] array< double, 2 >^%  M 
)

Convert from geocentric to geodetic to coordinates.

Parameters
[in]Xgeocentric coordinate (meters).
[in]Ygeocentric coordinate (meters).
[in]Zgeocentric coordinate (meters).
[out]latlatitude of point (degrees).
[out]lonlongitude of point (degrees).
[out]hheight of point above the ellipsoid (meters).
[out]Ma 3 × 3 rotation matrix.

Let v be a unit vector located at (lat, lon, h). We can express v as column vectors in one of two ways

  • in east, north, up coordinates (where the components are relative to a local coordinate system at (lat, lon, h)); call this representation v1.
  • in geocentric X, Y, Z coordinates; call this representation v0.

Then we have v1 = MTv0, where MT is the transpose of M.

Definition at line 120 of file dotnet/NETGeographicLib/Geocentric.cpp.

Member Data Documentation

property double NETGeographicLib::Geocentric::Flattening { double get()
Returns
f the flattening of the ellipsoid. This is the value used in the constructor.

Definition at line 222 of file Geocentric.h.

const GeographicLib::Geocentric* NETGeographicLib::Geocentric::m_pGeocentric
private

Definition at line 72 of file Geocentric.h.

property double NETGeographicLib::Geocentric::MajorRadius { double get()
Returns
a the equatorial radius of the ellipsoid (meters). This is the value used in the constructor.

Definition at line 216 of file Geocentric.h.


The documentation for this class was generated from the following files:


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:59:11