Variables
gen_second_order_dynamics Namespace Reference

Variables

list f
 
list fu
 
list fuu
 
list fux
 
list fx
 
list fxu
 
list fxx
 
 g_ = Symbol('g_')
 
 l_ = Symbol('l_')
 
 m_c_ = Symbol('m_c_')
 
 m_p_ = Symbol('m_p_')
 
 tddot
 
 tdot = Symbol('tdot')
 
 theta = Symbol('theta')
 
 u = Symbol('u')
 
tuple xddot = (u + m_p_ * sin(theta) * (l_ * (tdot * tdot) + g_ * cos(theta)))/(m_c_ + m_p_ * (sin(theta) * sin(theta)))
 
 xdot = Symbol('xdot')
 

Variable Documentation

list gen_second_order_dynamics.f
Initial value:
1 = [
2  xdot, tdot, xddot, tddot
3 ]

Definition at line 17 of file gen_second_order_dynamics.py.

list gen_second_order_dynamics.fu
Initial value:
1 = [
2  0, 0, diff(xddot, u), diff(tddot, u)
3 ]

Definition at line 29 of file gen_second_order_dynamics.py.

list gen_second_order_dynamics.fuu
Initial value:
1 = [
2  0, 0, diff(diff(xddot, u), u), diff(diff(tddot, u), u)
3 ]

Definition at line 33 of file gen_second_order_dynamics.py.

list gen_second_order_dynamics.fux
Initial value:
1 = [
2  # d/dx, d/dtheta, d/dxdot, d/dtdot
3  [0, 0, 0, 0],
4  [0, 0, 0, 0],
5  [0, diff(diff(xddot, u), theta), 0, diff(diff(xddot, u), tdot)],
6  [0, diff(diff(tddot, u), theta), 0, diff(diff(tddot, u), tdot)]
7 ]

Definition at line 71 of file gen_second_order_dynamics.py.

list gen_second_order_dynamics.fx
Initial value:
1 = [
2  # d/dx, d/dtheta, d/dxdot, d/dtdot
3  [0, 0, 1, 0],
4  [0, 0, 0, 1],
5  [0, diff(xddot, theta), 0, diff(xddot, tdot)],
6  [0, diff(tddot, theta), 0, diff(tddot, tdot)]
7 ]

Definition at line 21 of file gen_second_order_dynamics.py.

list gen_second_order_dynamics.fxu
Initial value:
1 = [
2  [0, 0, 0, 0],
3  [0, 0, 0, 0],
4  [0, diff(diff(xddot, theta), u), 0, diff(diff(xddot, tdot), u)],
5  [0, diff(diff(tddot, theta), u), 0, diff(diff(tddot, tdot), u)]
6 ]

Definition at line 79 of file gen_second_order_dynamics.py.

list gen_second_order_dynamics.fxx
Initial value:
1 = [
2  [
3  [0, 0, 0, 0],
4  [0, 0, 0, 0],
5  [0, 0, 0, 0],
6  [0, 0, 0, 0]
7  ], # fx_x
8  [
9  [0, 0, 0, 0],
10  [0, 0, 0, 0],
11  [0, diff(diff(xddot, theta), theta), 0, diff(diff(xddot, tdot), theta)],
12  [0, diff(diff(tddot, theta), theta), 0, diff(diff(tddot, tdot), theta)]
13  ], # fx_theta
14  [
15  [0, 0, 0, 0],
16  [0, 0, 0, 0],
17  [0, 0, 0, 0],
18  [0, 0, 0, 0]
19  ], # fx_xdot
20  [
21  [0, 0, 0, 0],
22  [0, 0, 0, 0],
23  [0, diff(diff(xddot, theta), tdot), 0, diff(diff(xddot, tdot), tdot)],
24  [0, diff(diff(tddot, theta), tdot), 0, diff(diff(tddot, tdot), tdot)]
25  ], # fx_tdot
26 ]

Definition at line 37 of file gen_second_order_dynamics.py.

gen_second_order_dynamics.g_ = Symbol('g_')

Definition at line 10 of file gen_second_order_dynamics.py.

gen_second_order_dynamics.l_ = Symbol('l_')

Definition at line 11 of file gen_second_order_dynamics.py.

gen_second_order_dynamics.m_c_ = Symbol('m_c_')

Definition at line 9 of file gen_second_order_dynamics.py.

gen_second_order_dynamics.m_p_ = Symbol('m_p_')

Definition at line 8 of file gen_second_order_dynamics.py.

gen_second_order_dynamics.tddot
Initial value:
1 = -(l_ * m_p_ * cos(theta) * sin(theta) * (tdot * tdot) + u * cos(theta) + (m_c_ + m_p_) * g_ * \
2  sin(theta))/(l_ * m_c_ + l_ * m_p_ * (sin(theta)*sin(theta)))

Definition at line 14 of file gen_second_order_dynamics.py.

gen_second_order_dynamics.tdot = Symbol('tdot')

Definition at line 5 of file gen_second_order_dynamics.py.

gen_second_order_dynamics.theta = Symbol('theta')

Definition at line 4 of file gen_second_order_dynamics.py.

gen_second_order_dynamics.u = Symbol('u')

Definition at line 7 of file gen_second_order_dynamics.py.

tuple gen_second_order_dynamics.xddot = (u + m_p_ * sin(theta) * (l_ * (tdot * tdot) + g_ * cos(theta)))/(m_c_ + m_p_ * (sin(theta) * sin(theta)))

Definition at line 13 of file gen_second_order_dynamics.py.

gen_second_order_dynamics.xdot = Symbol('xdot')

Definition at line 6 of file gen_second_order_dynamics.py.



exotica_cartpole_dynamics_solver
Author(s): Traiko Dinev
autogenerated on Sat Apr 10 2021 02:36:04