Public Member Functions | Private Member Functions | Private Attributes | List of all members
ASR::MultidimensionalGaussian Class Reference

#include <MultidimensionalGaussian.h>

Public Member Functions

std::vector< float > getMean ()
 
 MultidimensionalGaussian (std::vector< float > means, MatrixXf covariance)
 
void sampleRandomValues (std::vector< float > &x)
 

Private Member Functions

MatrixXf initMatrixXf (std::vector< float > values, unsigned int rows, unsigned int cols)
 
void initVectorFromCSVString (std::vector< float > &x, std::string csv)
 
VectorXf initVectorXf (std::vector< float > values)
 
void test ()
 

Private Attributes

MatrixXf covariance
 
int dimension
 
MatrixXf L
 
std::vector< float > means
 
GaussianPtr normal_dist
 

Detailed Description

This contains only one Gaussian.

Definition at line 41 of file MultidimensionalGaussian.h.

Constructor & Destructor Documentation

ASR::MultidimensionalGaussian::MultidimensionalGaussian ( std::vector< float >  means,
MatrixXf  covariance 
)
inline

Creates a multidimensional Gaussian-Kernel with the given parameters. The dimension of the means vector has to be the same as the covariance matrix.

Parameters
means- the means of the gaussian kernels
covariance- the covariance matrix of the gaussian kernel

Definition at line 57 of file MultidimensionalGaussian.h.

Member Function Documentation

std::vector<float> ASR::MultidimensionalGaussian::getMean ( )
inline

Returns the means of the gaussian.

Returns
the means of the gaussian

Definition at line 103 of file MultidimensionalGaussian.h.

MatrixXf ASR::MultidimensionalGaussian::initMatrixXf ( std::vector< float >  values,
unsigned int  rows,
unsigned int  cols 
)
inlineprivate

Inits a Eigen::MatrixXf with the given values. a list with the values the Eigen::VectorXf with the given values and dimension

Definition at line 127 of file MultidimensionalGaussian.h.

void ASR::MultidimensionalGaussian::initVectorFromCSVString ( std::vector< float > &  x,
std::string  csv 
)
inlineprivate

Inits a vector<float> with the given values. The given values have to be COMMA SEPERATED e.g. 1,2,3,4

Parameters
acsv string with the values the std::vector<float> with the given values and dimension

Definition at line 149 of file MultidimensionalGaussian.h.

VectorXf ASR::MultidimensionalGaussian::initVectorXf ( std::vector< float >  values)
inlineprivate

Inits a Eigen::VectorXf with the given values. a list with the values the Eigen::VectorXf with the given values and dimension

Definition at line 111 of file MultidimensionalGaussian.h.

void ASR::MultidimensionalGaussian::sampleRandomValues ( std::vector< float > &  x)
inline

Samples a random vector from the gmm and stores them in a given vector. There are sampled dimension of means (given in the constructor) values.

Parameters
x- the output vector that gains the generated random values.

Definition at line 78 of file MultidimensionalGaussian.h.

void ASR::MultidimensionalGaussian::test ( )
inlineprivate

Tests the Cholesky decomposition.

Definition at line 166 of file MultidimensionalGaussian.h.

Member Data Documentation

MatrixXf ASR::MultidimensionalGaussian::covariance
private

Definition at line 45 of file MultidimensionalGaussian.h.

int ASR::MultidimensionalGaussian::dimension
private

Definition at line 48 of file MultidimensionalGaussian.h.

MatrixXf ASR::MultidimensionalGaussian::L
private

Definition at line 46 of file MultidimensionalGaussian.h.

std::vector<float> ASR::MultidimensionalGaussian::means
private

Definition at line 44 of file MultidimensionalGaussian.h.

GaussianPtr ASR::MultidimensionalGaussian::normal_dist
private

Definition at line 47 of file MultidimensionalGaussian.h.


The documentation for this class was generated from the following file:


asr_recognizer_prediction_psm
Author(s): Braun Kai, Meißner Pascal
autogenerated on Wed Feb 19 2020 03:31:30