Public Member Functions | Private Member Functions | Private Attributes | List of all members
ASR::GMM Class Reference

#include <GMM.h>

Public Member Functions

void addGaussianModel (float weight, std::vector< float > mean, MatrixXf covariance)
 
ASR::MultidimensionalGaussianPtr getModel (unsigned int index)
 
 GMM ()
 
void sampleRandomValues (std::vector< float > &x)
 

Private Member Functions

float gen_random_float (float min, float max)
 

Private Attributes

std::vector< float > histogramm
 
std::vector< ASR::MultidimensionalGaussianPtrmodels
 
boost::mt19937 rng
 
std::vector< float > weights
 

Detailed Description

This class contains a list of multidimensional gaussians. With weights they model a gaussian mixture model.

Definition at line 32 of file GMM.h.

Constructor & Destructor Documentation

ASR::GMM::GMM ( )
inline

Definition at line 55 of file GMM.h.

Member Function Documentation

void ASR::GMM::addGaussianModel ( float  weight,
std::vector< float >  mean,
MatrixXf  covariance 
)
inline

Adds a new multidimensional gaussian to the gaussian mixture model.

Parameters
weight- the weight of the new gaussian kernel
mean- mean values of the new gaussian kernel
covariance- the covariance matrix of the new gaussian kernel

Definition at line 68 of file GMM.h.

float ASR::GMM::gen_random_float ( float  min,
float  max 
)
inlineprivate

Get a random number between min and max.

Parameters
min- min value
max- max value
Returns
xi € [min, max)

Definition at line 47 of file GMM.h.

ASR::MultidimensionalGaussianPtr ASR::GMM::getModel ( unsigned int  index)
inline

Returns the model at the given index

Parameters
index- the index of the model
Returns
the model at the given index

Definition at line 125 of file GMM.h.

void ASR::GMM::sampleRandomValues ( std::vector< float > &  x)
inline

Samples a random vector from the gaussian mixture model and stores the values in the given vector x. First a gaussian kernel is randomly selected. "Heavier" weighted kernels are more likely than "lighter" weighted kernels. The dimension of x depends on the dimension of the kernels which were given in the initialization.

Parameters
x- the output vector which contains the sampled values.

Definition at line 86 of file GMM.h.

Member Data Documentation

std::vector<float> ASR::GMM::histogramm
private

Definition at line 37 of file GMM.h.

std::vector<ASR::MultidimensionalGaussianPtr> ASR::GMM::models
private

Definition at line 35 of file GMM.h.

boost::mt19937 ASR::GMM::rng
private

Definition at line 38 of file GMM.h.

std::vector<float> ASR::GMM::weights
private

Definition at line 36 of file GMM.h.


The documentation for this class was generated from the following file:


asr_recognizer_prediction_psm
Author(s): Braun Kai, Meißner Pascal
autogenerated on Wed Feb 19 2020 03:31:30