Program Listing for File Polynomial.h

Return to documentation for file (src/VALfiles/Polynomial.h)

/************************************************************************
 * Copyright 2008, Strathclyde Planning Group,
 * Department of Computer and Information Sciences,
 * University of Strathclyde, Glasgow, UK
 * http://planning.cis.strath.ac.uk/
 *
 * Maria Fox, Richard Howey and Derek Long - VAL
 * Stephen Cresswell - PDDL Parser
 *
 * This file is part of VAL, the PDDL validator.
 *
 * VAL is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * VAL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with VAL.  If not, see <http://www.gnu.org/licenses/>.
 *
 ************************************************************************/

/*-----------------------------------------------------------------------------
  VAL - The Automatic Plan Validator for PDDL+

  $Date: 2009-02-05 10:50:21 $
  $Revision: 1.2 $

  Maria Fox, Richard Howey and Derek Long - PDDL+ and VAL
  Stephen Cresswell - PDDL Parser

  maria.fox@cis.strath.ac.uk
  derek.long@cis.strath.ac.uk
  stephen.cresswell@cis.strath.ac.uk
  richard.howey@cis.strath.ac.uk

  By releasing this code we imply no warranty as to its reliability
  and its use is entirely at your own risk.

  Strathclyde Planning Group
  http://planning.cis.strath.ac.uk
 ----------------------------------------------------------------------------*/
//#undef vector
#include <map>
#include <iostream>
#include <vector>
#include <utility>
//#include "Proposition.h"

#ifndef __POLYNOMIAL
#define __POLYNOMIAL

using std::make_pair;
using std::pair;
using std::vector;
using std::ostream;
using std::map;

//#define vector std::vector
namespace VAL {

class Polynomial;
class Comparison;
class State;

//typedef float CoScalar;
typedef long double CoScalar;

typedef pair<CoScalar,bool> intervalEnd;
    //value of interval end point, bool - true = closed, false = open

struct Intervals {

    vector<pair<intervalEnd,intervalEnd> >  intervals;


    Intervals() {};
        Intervals(bool b);
    Intervals(vector<pair<intervalEnd,intervalEnd> > ints);
    ~Intervals();

    bool operator==(const Intervals & ints) const;


    void write(ostream & o) const;
   void writeOffset(double t) const;
};

ostream & operator <<(ostream & o,const Intervals & i);

class CtsFunction {

public:

    CtsFunction() {};

    virtual ~CtsFunction() {};

    virtual vector<CoScalar> getRoots(CoScalar t) const = 0; //on interval(0,t) within accuracy
    virtual Polynomial getApproxPoly(CoScalar endInt) const = 0;
    virtual pair<vector<pair<intervalEnd,intervalEnd> >,vector<CoScalar> > isolateRoots(CoScalar t,CoScalar accuracy) const = 0;
    virtual CoScalar evaluate(CoScalar t) const = 0;
    virtual bool isLinear() const = 0;
    virtual void write(ostream & o) const = 0;
   virtual Intervals getIntervals(const Comparison * comp, const State* s,CoScalar t) const = 0;
   virtual bool checkInvariant(const Comparison * comp, const State* s,CoScalar t,bool rhsIntervalOpen) const = 0;
};

ostream & operator <<(ostream & o,const CtsFunction & cf);


class Polynomial  : public CtsFunction {

private:


    map<unsigned int,CoScalar> coeffs;


public:

    Polynomial() {};
    Polynomial(map<unsigned int,CoScalar> c) : coeffs(c) {};

    ~Polynomial();


    static const CoScalar tooSmall; //regarded as zero or of unknown sign if abs value less than this
    static CoScalar accuracy; //accuracy to calculate poly roots

    CoScalar getCoeff(unsigned int pow) const;
    void setCoeff(unsigned int pow,CoScalar value);
    void addToCoeff(unsigned int pow,CoScalar value);
    unsigned int getDegree() const;

   Polynomial getApproxPoly(CoScalar endInt) const {return *this;};
    vector<CoScalar> getRoots(CoScalar t) const; //on interval(0,t) within accuracy
    Intervals getIntervals(const Comparison * comp, const State* s,CoScalar t) const;
    bool checkInvariant(const Comparison * comp, const State* s,CoScalar t,bool rhsIntervalOpen) const;

    static void setAccuracy(CoScalar ac) {accuracy = ac/10;};
    pair<Polynomial,Polynomial> divide(const Polynomial & d) const;
    Polynomial getGCD(const Polynomial & p) const;
    Polynomial removeRepeatedRoots() const;
    bool checkPolynomialCoeffs() const;
    void removeSmallCoeffs();
    pair<vector<pair<intervalEnd,intervalEnd> >,vector<CoScalar> > isolateRoots(CoScalar t,CoScalar accuracy = 0) const;
    bool rootsExist(CoScalar t) const; //on open interval (0,t)

    Polynomial& operator+=(const Polynomial & p);
    Polynomial& operator+=(CoScalar num);
    Polynomial& operator-=(const Polynomial & p);
    Polynomial& operator-=(CoScalar num);
    Polynomial& operator*=(const Polynomial & p);
    Polynomial& operator*=(CoScalar num);
    bool operator==(const Polynomial & p) const;

    CoScalar evaluate(CoScalar t) const;

   bool isLinear() const;
    Polynomial diff() const;
    Polynomial integrate() const;

    void write(ostream & o) const;
};

ostream & operator <<(ostream & o,const Polynomial & p);

class Exponential : public CtsFunction {

private:

    CoScalar K,c; //f(t) = K e^(poly) + c
    const Polynomial * poly;
  mutable CoScalar offSet; //for comparisons of type y > k, where y is FE and k is offset
public:

    Exponential() : K(1),  c(0), poly(0), offSet(0) {};
    Exponential(CoScalar K0, const Polynomial * p, CoScalar c0) : K(K0),  c(c0), poly(p), offSet(0) {};

    ~Exponential() {delete poly;};

    Polynomial getApproxPoly(CoScalar endInt) const;
   void setOffSet(double off) {offSet = off;};
    vector<CoScalar> getRoots(CoScalar t) const; //on interval(0,t) within accuracy
    pair<vector<pair<intervalEnd,intervalEnd> >,vector<CoScalar> > isolateRoots(CoScalar t,CoScalar accuracy) const;
    CoScalar evaluate(CoScalar t) const;
    bool isLinear() const;
    const Polynomial * getPolynomial() const {return poly;};
   Intervals getIntervals(const Comparison * comp, const State* s,CoScalar t) const;
   bool checkInvariant(const Comparison * comp, const State* s,CoScalar t,bool rhsIntervalOpen) const;
   bool rootsExist(CoScalar t) const; //on open interval (0,t)
    CoScalar getK() const {return K;};
   CoScalar getc() const {return c;};
    unsigned int getNoTerms(CoScalar endInt) const; //number of terms to take from power series for approx poly


    void write(ostream & o) const;
};

//only subclasses instances of this class to be actually used
class NumericalSolution : public CtsFunction {

protected:

  map<double,CoScalar> points; // time value maps to value of the function
  mutable CoScalar offSet; //for comparisons of type y > k, where y is FE and k is offset
public:

    NumericalSolution() {};
    NumericalSolution(map<double,CoScalar> pts, CoScalar off) : points(pts), offSet(off) {};

    virtual ~NumericalSolution() {};
   void buildPoints(CoScalar a0,CoScalar b0,CoScalar y,CoScalar accuracy);  //initial value given at time t0
   void setOffSet(double off) {offSet = off;};
   double getOffSet() const {return offSet;};
   map<double,CoScalar> getPoints() const {return points;};
   Intervals getIntervals(const Comparison * comp, const State* s,CoScalar t) const;
   bool checkInvariant(const Comparison * comp, const State* s,CoScalar t,bool rhsIntervalOpen) const;
    vector<CoScalar> getRoots(CoScalar t) const; //on interval(0,t) within accuracy
    Polynomial getApproxPoly(CoScalar endInt) const;
    pair<vector<pair<intervalEnd,intervalEnd> >,vector<CoScalar> > isolateRoots(CoScalar t,CoScalar accuracy) const;
    CoScalar evaluate(CoScalar t) const;
    bool isLinear() const;
   virtual CoScalar evaluateDiff(CoScalar t,CoScalar y) = 0;
};

class BatteryCharge : public NumericalSolution {
   //for diff eqn:   dy/dt = p(t) (m - y) - k(t),   for some poly p(t) and some constant m and discharge k(t)
    const Polynomial * poly;
   CoScalar m;
   vector<pair<const CtsFunction *,bool> > discharge;

public:

    BatteryCharge() : poly(0), m(0), discharge() {};
    BatteryCharge(const Polynomial * p,CoScalar m0,vector<pair<const CtsFunction *,bool> > d,CoScalar t0,CoScalar t1,CoScalar y0,CoScalar accuracy) :
      poly(p), m(m0), discharge(d)
        { offSet = 0; buildPoints(t0,t1,y0,accuracy);};

    BatteryCharge(CoScalar off,map<double,CoScalar> pts, const Polynomial * p,CoScalar m0,vector<pair<const CtsFunction *,bool> > d) :
      NumericalSolution(pts,off), poly(p), m(m0), discharge(d) {};

    ~BatteryCharge()
    {//if(poly != 0) delete poly;
     //    for(vector<pair<const CtsFunction *,bool> >::const_iterator i = discharge.begin(); i != discharge.end(); ++i)
     // {
      //    delete i->first;
     // };
    };
    CoScalar evaluateDiff(CoScalar t,CoScalar y);


    void write(ostream & o) const;
};

Polynomial operator+(const Polynomial & p,const Polynomial & q);
Polynomial operator+(CoScalar num,const Polynomial & p);
Polynomial operator+(const Polynomial & p,CoScalar num);

Polynomial operator-(const Polynomial & p,const Polynomial & q);
Polynomial operator-(CoScalar num,const Polynomial & p);
Polynomial operator-(const Polynomial & p,CoScalar num);

Polynomial operator*(const Polynomial & p,const Polynomial & q);
Polynomial operator*(CoScalar num,const Polynomial & p);
Polynomial operator*(const Polynomial & p,CoScalar num);

Polynomial operator-(const Polynomial & p);
Polynomial operator/(const Polynomial & p,CoScalar num);

};


#endif