Template Class Symmetric3Tpl
Defined in File symmetric3.hpp
Nested Relationships
Nested Types
Class Documentation
-
template<typename _Scalar, int _Options>
class Symmetric3Tpl Public Types
Values:
-
enumerator Options
-
enumerator Options
Public Functions
-
inline Symmetric3Tpl()
-
inline Symmetric3Tpl(const Scalar &a0, const Scalar &a1, const Scalar &a2, const Scalar &a3, const Scalar &a4, const Scalar &a5)
-
inline void setZero()
-
inline void setRandom()
-
inline void setIdentity()
-
inline bool operator==(const Symmetric3Tpl &other) const
-
inline bool operator!=(const Symmetric3Tpl &other) const
-
inline bool isApprox(const Symmetric3Tpl &other, const Scalar &prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
-
inline Symmetric3Tpl operator-(const SkewSquare &v) const
-
inline Symmetric3Tpl &operator-=(const SkewSquare &v)
-
inline Symmetric3Tpl operator-(const AlphaSkewSquare &v) const
-
inline Symmetric3Tpl &operator-=(const AlphaSkewSquare &v)
-
template<typename Vector3>
inline Matrix3 vxs(const Eigen::MatrixBase<Vector3> &v) const Performs the operation \( [v]_{\times} S \). This operation is equivalent to applying the cross product of v on each column of S.
- Template Parameters:
Vector3 –
- Parameters:
v – [in] a vector of dimension 3.
- Returns:
the result \( [v]_{\times} S \).
-
template<typename Vector3>
inline Matrix3 svx(const Eigen::MatrixBase<Vector3> &v) const Performs the operation \( M = S_{3} [v]_{\times} \).
- Template Parameters:
Vector3 –
- Parameters:
v – [in] a vector of dimension 3.
- Returns:
the result \( S [v]_{\times} \).
-
inline Symmetric3Tpl operator+(const Symmetric3Tpl &s2) const
-
inline Symmetric3Tpl &operator+=(const Symmetric3Tpl &s2)
-
inline Symmetric3Tpl operator-(const Matrix3 &S) const
-
inline Symmetric3Tpl operator+(const Matrix3 &S) const
-
template<typename D>
inline Symmetric3Tpl rotate(const Eigen::MatrixBase<D> &R) const
-
template<typename NewScalar>
inline Symmetric3Tpl<NewScalar, Options> cast() const - Returns:
An expression of *this with the Scalar type casted to NewScalar.
Public Static Functions
-
static inline Symmetric3Tpl Zero()
-
static inline Symmetric3Tpl Random()
-
static inline Symmetric3Tpl Identity()
-
static inline Symmetric3Tpl RandomPositive()
-
template<typename Vector3, typename Matrix3>
static inline void vxs(const Eigen::MatrixBase<Vector3> &v, const Symmetric3Tpl &S3, const Eigen::MatrixBase<Matrix3> &M) Performs the operation \( M = [v]_{\times} S_{3} \). This operation is equivalent to applying the cross product of v on each column of S.
- Template Parameters:
Vector3, Matrix3 –
- Parameters:
v – [in] a vector of dimension 3.
S3 – [in] a symmetric matrix of dimension 3x3.
M – [out] an output matrix of dimension 3x3.
-
template<typename Vector3, typename Matrix3>
static inline void svx(const Eigen::MatrixBase<Vector3> &v, const Symmetric3Tpl &S3, const Eigen::MatrixBase<Matrix3> &M) Performs the operation \( M = S_{3} [v]_{\times} \).
- Template Parameters:
Vector3, Matrix3 –
- Parameters:
v – [in] a vector of dimension 3.
S3 – [in] a symmetric matrix of dimension 3x3.
M – [out] an output matrix of dimension 3x3.
-
template<typename V3in, typename V3out>
static inline void rhsMult(const Symmetric3Tpl &S3, const Eigen::MatrixBase<V3in> &vin, const Eigen::MatrixBase<V3out> &vout)
Friends
-
template<typename D>
inline friend Matrix3 operator-(const Symmetric3Tpl &S, const Eigen::MatrixBase<D> &M)
-
inline friend AlphaSkewSquare operator*(const Scalar &m, const SkewSquare &sk)
-
struct AlphaSkewSquare
Public Functions
-
inline AlphaSkewSquare(const Scalar &m, const SkewSquare &v)
-
inline operator Symmetric3Tpl() const
-
inline AlphaSkewSquare(const Scalar &m, const SkewSquare &v)
-
struct SkewSquare