Classes | Typedefs | Functions
algorithms.h File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  reinforcement_learning
struct  s_path
struct  s_path_mcost

Typedefs

typedef unsigned int uint

Functions

bool caminho_apartir_vizinhos_unicos (vertex *vertex_web, int dimension, int *caminho_principal, int &elem_max, int &custo_max, int seed)
bool check_visited (vertex *vertex_web, int dimension)
void clear_visited (vertex *vertex_web, uint dimension)
bool computar_caminho_de_ida (vertex *vertex_web, int dimension, int *caminho_de_ida, int &elem_c_ida, int *caminho_principal, int elem_cp, int num_arcos)
int computar_custo_caminho_final (vertex *vertex_web, int *caminho_final, int elem_caminho_final)
uint conscientious_reactive (uint current_vertex, vertex *vertex_web, double *instantaneous_idleness)
int count_intention (uint vertex, int *tab_intention, int nr_robots)
void create_source_and_dest_tables (vertex *vertex_web, uint *source, uint *destination, uint dimension)
int cyclic (uint dimension, vertex *vertex_web, int *caminho_final)
int devolve_viz_unicos (vertex *vertex_web, int vertice)
int devolve_vizinhos_nao_visitados (vertex *vertex_web, int dimension, int vertice)
void dijkstra (uint source, uint destination, int *shortest_path, uint &elem_s_path, vertex *vertex_web, uint dimension)
void dijkstra_mcost (uint source, uint destination, int *shortest_path, uint &elem_s_path, vertex *vertex_web, double new_costs[][8], uint dimension)
double get_edge_cost_between (vertex *vertex_web, uint vertex_A, uint vertex_B)
int get_hist_idx (uint *source, uint *destination, uint source_vertex, uint dest_vertex, uint hist_dimension)
int get_hist_idx_from_edge_cost (double *hist_sort, uint size, double edge_cost)
void get_hist_sort (vertex *vertex_web, double *hist_sort, uint dimension)
int get_max (uint *tab, uint tam_tab)
double get_max_dbl (double *tab, uint tam_tab)
int get_min (uint *tab, uint tam_tab)
double get_min_dbl (double *tab, uint tam_tab)
uint get_MSP_dimension (const char *msp_file)
void get_MSP_route (uint *route, uint dimension, const char *msp_file)
uint greedy_bayesian_strategy (uint current_vertex, vertex *vertex_web, double *instantaneous_idleness, double G1, double G2, double edge_min)
uint heuristic_conscientious_reactive (uint current_vertex, vertex *vertex_web, double *instantaneous_idleness)
uint heuristic_pathfinder_conscientious_cognitive (uint current_vertex, vertex *vertex_web, double *instantaneous_idleness, uint dimension, uint *path)
int is_neigh (uint vertex1, uint vertex2, vertex *vertex_web, uint dimension)
int learning_algorithm (uint current_vertex, vertex *vertex_web, double *instantaneous_idleness, double *avg_idleness, int *tab_intention, double *histogram, uint *source, uint *destination, uint hist_dimension, int nr_robots, int id_robot, uint *node_count, reinforcement_learning &RL)
void load_real_histogram (double *real_histogram, uint size_hist, char *filename)
long double log2 (const long double x)
int longest_path (vertex *vertex_web, int origem, int destino, int *lista_v1v, int i_list, int dimension, int seed, int *caminho_parcial, int &elem_cp)
void normalize_histogram (double *real_histogram, double *histogram, uint size_hist)
bool pertence (int elemento, int *tab, int tam_tab)
int pertence_idx (int elemento, int *tab, int tam_tab)
int pertence_uint_idx (uint elemento, uint *tab, uint tam_tab)
bool procurar_ciclo (vertex *vertex_web, uint dimension, int *caminho_principal, int &elem_caminho, int &custo_max, int seed)
uint random (uint current_vertex, vertex *vertex_web)
void shift_cyclic_path (uint start_vertex, int *caminho_final, int elem_caminho_final)
uint state_exchange_bayesian_strategy (uint current_vertex, vertex *vertex_web, double *instantaneous_idleness, int *tab_intention, int nr_robots, double G1, double G2, double edge_min)
bool UHC (vertex *vertex_web, int v1, int *caminho_principal, uint dimension)
void update_likelihood (reinforcement_learning RL, double *real_histogram, uint *source, uint *destination, uint hist_dimension, vertex *vertex_web, int minimum_global_node_count, uint robotid)
void update_likelihood_new (reinforcement_learning RL, uint *node_count_table, double *inst_idleness, uint dimension, double *real_histogram, uint *source, uint *destination, uint hist_dimension, vertex *vertex_web, uint robotid)
void update_likelihood_old (reinforcement_learning RL, double *real_histogram, double *hist_sort, uint size_hist, vertex *vertex_web)
bool verificar_arco_cp (int no_1, int no_2, int *caminho_principal, int elem_cp)
void write_histogram_to_file (vertex *vertex_web, double *real_histogram, double *histogram, uint *source, uint *destination, uint hist_dimension, uint number, uint robotid)
void write_reward_evolution (double reward, uint robotid)

Typedef Documentation

typedef unsigned int uint

Definition at line 38 of file algorithms.h.


Function Documentation

bool caminho_apartir_vizinhos_unicos ( vertex vertex_web,
int  dimension,
int *  caminho_principal,
int &  elem_max,
int &  custo_max,
int  seed 
)

Definition at line 1638 of file algorithms.cpp.

bool check_visited ( vertex vertex_web,
int  dimension 
)

Definition at line 1736 of file algorithms.cpp.

void clear_visited ( vertex vertex_web,
uint  dimension 
)

Definition at line 929 of file algorithms.cpp.

bool computar_caminho_de_ida ( vertex vertex_web,
int  dimension,
int *  caminho_de_ida,
int &  elem_c_ida,
int *  caminho_principal,
int  elem_cp,
int  num_arcos 
)

Definition at line 1778 of file algorithms.cpp.

int computar_custo_caminho_final ( vertex vertex_web,
int *  caminho_final,
int  elem_caminho_final 
)

Definition at line 2248 of file algorithms.cpp.

uint conscientious_reactive ( uint  current_vertex,
vertex vertex_web,
double *  instantaneous_idleness 
)

Definition at line 72 of file algorithms.cpp.

int count_intention ( uint  vertex,
int *  tab_intention,
int  nr_robots 
)

Definition at line 301 of file algorithms.cpp.

void create_source_and_dest_tables ( vertex vertex_web,
uint source,
uint destination,
uint  dimension 
)

Definition at line 2643 of file algorithms.cpp.

int cyclic ( uint  dimension,
vertex vertex_web,
int *  caminho_final 
)

Definition at line 2274 of file algorithms.cpp.

int devolve_viz_unicos ( vertex vertex_web,
int  vertice 
)

Definition at line 1310 of file algorithms.cpp.

int devolve_vizinhos_nao_visitados ( vertex vertex_web,
int  dimension,
int  vertice 
)

Definition at line 1757 of file algorithms.cpp.

void dijkstra ( uint  source,
uint  destination,
int *  shortest_path,
uint elem_s_path,
vertex vertex_web,
uint  dimension 
)

Definition at line 415 of file algorithms.cpp.

void dijkstra_mcost ( uint  source,
uint  destination,
int *  shortest_path,
uint elem_s_path,
vertex vertex_web,
double  new_costs[][8],
uint  dimension 
)

Definition at line 535 of file algorithms.cpp.

double get_edge_cost_between ( vertex vertex_web,
uint  vertex_A,
uint  vertex_B 
)

Definition at line 2703 of file algorithms.cpp.

int get_hist_idx ( uint source,
uint destination,
uint  source_vertex,
uint  dest_vertex,
uint  hist_dimension 
)

Definition at line 2691 of file algorithms.cpp.

int get_hist_idx_from_edge_cost ( double *  hist_sort,
uint  size,
double  edge_cost 
)

Definition at line 2677 of file algorithms.cpp.

void get_hist_sort ( vertex vertex_web,
double *  hist_sort,
uint  dimension 
)

Definition at line 2658 of file algorithms.cpp.

int get_max ( uint tab,
uint  tam_tab 
)

Definition at line 2799 of file algorithms.cpp.

double get_max_dbl ( double *  tab,
uint  tam_tab 
)

Definition at line 2812 of file algorithms.cpp.

int get_min ( uint tab,
uint  tam_tab 
)

Definition at line 2773 of file algorithms.cpp.

double get_min_dbl ( double *  tab,
uint  tam_tab 
)

Definition at line 2786 of file algorithms.cpp.

uint get_MSP_dimension ( const char *  msp_file)

Definition at line 2596 of file algorithms.cpp.

void get_MSP_route ( uint route,
uint  dimension,
const char *  msp_file 
)

Definition at line 2613 of file algorithms.cpp.

uint greedy_bayesian_strategy ( uint  current_vertex,
vertex vertex_web,
double *  instantaneous_idleness,
double  G1,
double  G2,
double  edge_min 
)

Definition at line 226 of file algorithms.cpp.

uint heuristic_conscientious_reactive ( uint  current_vertex,
vertex vertex_web,
double *  instantaneous_idleness 
)

Definition at line 124 of file algorithms.cpp.

uint heuristic_pathfinder_conscientious_cognitive ( uint  current_vertex,
vertex vertex_web,
double *  instantaneous_idleness,
uint  dimension,
uint path 
)

Definition at line 642 of file algorithms.cpp.

int is_neigh ( uint  vertex1,
uint  vertex2,
vertex vertex_web,
uint  dimension 
)

Definition at line 522 of file algorithms.cpp.

int learning_algorithm ( uint  current_vertex,
vertex vertex_web,
double *  instantaneous_idleness,
double *  avg_idleness,
int *  tab_intention,
double *  histogram,
uint source,
uint destination,
uint  hist_dimension,
int  nr_robots,
int  id_robot,
uint node_count,
reinforcement_learning RL 
)

IMMEDIATE LOCAL NORMALIZED PRIOR - BEFORE

LOCAL LOOKAHEAD PRIOR

IMMEDIATE LOCAL NORMALIZED PRIOR - BEFORE

LOCAL LOOKAHEAD PRIOR

CALCULATE DECISION ENTROPY

NORMALIZE ENTROPY ACCORDING TO NR# DECISIONS

Definition at line 3445 of file algorithms.cpp.

void load_real_histogram ( double *  real_histogram,
uint  size_hist,
char *  filename 
)

Definition at line 2716 of file algorithms.cpp.

long double log2 ( const long double  x) [inline]

Definition at line 53 of file algorithms.cpp.

int longest_path ( vertex vertex_web,
int  origem,
int  destino,
int *  lista_v1v,
int  i_list,
int  dimension,
int  seed,
int *  caminho_parcial,
int &  elem_cp 
)

Definition at line 1321 of file algorithms.cpp.

void normalize_histogram ( double *  real_histogram,
double *  histogram,
uint  size_hist 
)

Definition at line 2745 of file algorithms.cpp.

bool pertence ( int  elemento,
int *  tab,
int  tam_tab 
)

Definition at line 832 of file algorithms.cpp.

int pertence_idx ( int  elemento,
int *  tab,
int  tam_tab 
)

Definition at line 845 of file algorithms.cpp.

int pertence_uint_idx ( uint  elemento,
uint tab,
uint  tam_tab 
)

Definition at line 2760 of file algorithms.cpp.

bool procurar_ciclo ( vertex vertex_web,
uint  dimension,
int *  caminho_principal,
int &  elem_caminho,
int &  custo_max,
int  seed 
)

Definition at line 942 of file algorithms.cpp.

uint random ( uint  current_vertex,
vertex vertex_web 
)

Definition at line 58 of file algorithms.cpp.

void shift_cyclic_path ( uint  start_vertex,
int *  caminho_final,
int  elem_caminho_final 
)

Definition at line 2564 of file algorithms.cpp.

uint state_exchange_bayesian_strategy ( uint  current_vertex,
vertex vertex_web,
double *  instantaneous_idleness,
int *  tab_intention,
int  nr_robots,
double  G1,
double  G2,
double  edge_min 
)

Definition at line 325 of file algorithms.cpp.

bool UHC ( vertex vertex_web,
int  v1,
int *  caminho_principal,
uint  dimension 
)

Definition at line 858 of file algorithms.cpp.

void update_likelihood ( reinforcement_learning  RL,
double *  real_histogram,
uint source,
uint destination,
uint  hist_dimension,
vertex vertex_web,
int  minimum_global_node_count,
uint  robotid 
)

node counts normalizados pelo vertex degree*2 (se deg>1)

reward se for a menor node_cont (não normalizado) do grafo global

Dimension this as a parameter (alfa) in the reward funcion

alfa = 100

1- CALCULAR A NOVA Idleness BASEADA NO INSTANTE DE TEMPO ***

2- Quanto mais baixa a entropia, maior o reward ou punishment

ALTERADO PARA SER EDGE DIRIGIDA: Faz mais sentido...

Definition at line 2977 of file algorithms.cpp.

void update_likelihood_new ( reinforcement_learning  RL,
uint node_count_table,
double *  inst_idleness,
uint  dimension,
double *  real_histogram,
uint source,
uint destination,
uint  hist_dimension,
vertex vertex_web,
uint  robotid 
)

AQUI POSSO PENALIZAR BASTANTE = NÓ QUE ACABEI DE VISITAR E NAO QUERO CA VOLTAR

reward se for a menor node_cont (não normalizado) do grafo global

Definition at line 3206 of file algorithms.cpp.

void update_likelihood_old ( reinforcement_learning  RL,
double *  real_histogram,
double *  hist_sort,
uint  size_hist,
vertex vertex_web 
)

1- CALCULAR A NOVA Idleness BASEADA NO INSTANTE DE TEMPO ***

2- Quanto mais baixa a entropia, maior o reward ou punishment

Definition at line 2872 of file algorithms.cpp.

bool verificar_arco_cp ( int  no_1,
int  no_2,
int *  caminho_principal,
int  elem_cp 
)

Definition at line 1710 of file algorithms.cpp.

void write_histogram_to_file ( vertex vertex_web,
double *  real_histogram,
double *  histogram,
uint source,
uint destination,
uint  hist_dimension,
uint  number,
uint  robotid 
)

Definition at line 2825 of file algorithms.cpp.

void write_reward_evolution ( double  reward,
uint  robotid 
)

Definition at line 2853 of file algorithms.cpp.



patrolling_sim
Author(s):
autogenerated on Mon Oct 2 2017 03:13:50