00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_UMFPACKSUPPORT_H
00011 #define EIGEN_UMFPACKSUPPORT_H
00012
00013 namespace Eigen {
00014
00015
00016
00017
00018
00019 inline void umfpack_free_numeric(void **Numeric, double)
00020 { umfpack_di_free_numeric(Numeric); *Numeric = 0; }
00021
00022 inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
00023 { umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
00024
00025 inline void umfpack_free_symbolic(void **Symbolic, double)
00026 { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
00027
00028 inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
00029 { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
00030
00031 inline int umfpack_symbolic(int n_row,int n_col,
00032 const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
00033 const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
00034 {
00035 return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
00036 }
00037
00038 inline int umfpack_symbolic(int n_row,int n_col,
00039 const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
00040 const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
00041 {
00042 return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
00043 }
00044
00045 inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
00046 void *Symbolic, void **Numeric,
00047 const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
00048 {
00049 return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
00050 }
00051
00052 inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
00053 void *Symbolic, void **Numeric,
00054 const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
00055 {
00056 return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
00057 }
00058
00059 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
00060 double X[], const double B[], void *Numeric,
00061 const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
00062 {
00063 return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
00064 }
00065
00066 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
00067 std::complex<double> X[], const std::complex<double> B[], void *Numeric,
00068 const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
00069 {
00070 return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
00071 }
00072
00073 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
00074 {
00075 return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
00076 }
00077
00078 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
00079 {
00080 return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
00081 }
00082
00083 inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
00084 int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
00085 {
00086 return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
00087 }
00088
00089 inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
00090 int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
00091 {
00092 double& lx0_real = numext::real_ref(Lx[0]);
00093 double& ux0_real = numext::real_ref(Ux[0]);
00094 double& dx0_real = numext::real_ref(Dx[0]);
00095 return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
00096 Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
00097 }
00098
00099 inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
00100 {
00101 return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
00102 }
00103
00104 inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
00105 {
00106 double& mx_real = numext::real_ref(*Mx);
00107 return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
00108 }
00109
00110 namespace internal {
00111 template<typename T> struct umfpack_helper_is_sparse_plain : false_type {};
00112 template<typename Scalar, int Options, typename StorageIndex>
00113 struct umfpack_helper_is_sparse_plain<SparseMatrix<Scalar,Options,StorageIndex> >
00114 : true_type {};
00115 template<typename Scalar, int Options, typename StorageIndex>
00116 struct umfpack_helper_is_sparse_plain<MappedSparseMatrix<Scalar,Options,StorageIndex> >
00117 : true_type {};
00118 }
00119
00133 template<typename _MatrixType>
00134 class UmfPackLU : internal::noncopyable
00135 {
00136 public:
00137 typedef _MatrixType MatrixType;
00138 typedef typename MatrixType::Scalar Scalar;
00139 typedef typename MatrixType::RealScalar RealScalar;
00140 typedef typename MatrixType::Index Index;
00141 typedef Matrix<Scalar,Dynamic,1> Vector;
00142 typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
00143 typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
00144 typedef SparseMatrix<Scalar> LUMatrixType;
00145 typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
00146
00147 public:
00148
00149 UmfPackLU() { init(); }
00150
00151 UmfPackLU(const MatrixType& matrix)
00152 {
00153 init();
00154 compute(matrix);
00155 }
00156
00157 ~UmfPackLU()
00158 {
00159 if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
00160 if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
00161 }
00162
00163 inline Index rows() const { return m_copyMatrix.rows(); }
00164 inline Index cols() const { return m_copyMatrix.cols(); }
00165
00171 ComputationInfo info() const
00172 {
00173 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00174 return m_info;
00175 }
00176
00177 inline const LUMatrixType& matrixL() const
00178 {
00179 if (m_extractedDataAreDirty) extractData();
00180 return m_l;
00181 }
00182
00183 inline const LUMatrixType& matrixU() const
00184 {
00185 if (m_extractedDataAreDirty) extractData();
00186 return m_u;
00187 }
00188
00189 inline const IntColVectorType& permutationP() const
00190 {
00191 if (m_extractedDataAreDirty) extractData();
00192 return m_p;
00193 }
00194
00195 inline const IntRowVectorType& permutationQ() const
00196 {
00197 if (m_extractedDataAreDirty) extractData();
00198 return m_q;
00199 }
00200
00205 template<typename InputMatrixType>
00206 void compute(const InputMatrixType& matrix)
00207 {
00208 if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
00209 if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
00210 grapInput(matrix.derived());
00211 analyzePattern_impl();
00212 factorize_impl();
00213 }
00214
00219 template<typename Rhs>
00220 inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const
00221 {
00222 eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
00223 eigen_assert(rows()==b.rows()
00224 && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
00225 return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived());
00226 }
00227
00232 template<typename Rhs>
00233 inline const internal::sparse_solve_retval<UmfPackLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
00234 {
00235 eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
00236 eigen_assert(rows()==b.rows()
00237 && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
00238 return internal::sparse_solve_retval<UmfPackLU, Rhs>(*this, b.derived());
00239 }
00240
00247 template<typename InputMatrixType>
00248 void analyzePattern(const InputMatrixType& matrix)
00249 {
00250 if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
00251 if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
00252
00253 grapInput(matrix.derived());
00254
00255 analyzePattern_impl();
00256 }
00257
00264 template<typename InputMatrixType>
00265 void factorize(const InputMatrixType& matrix)
00266 {
00267 eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
00268 if(m_numeric)
00269 umfpack_free_numeric(&m_numeric,Scalar());
00270
00271 grapInput(matrix.derived());
00272
00273 factorize_impl();
00274 }
00275
00276 #ifndef EIGEN_PARSED_BY_DOXYGEN
00277
00278 template<typename BDerived,typename XDerived>
00279 bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
00280 #endif
00281
00282 Scalar determinant() const;
00283
00284 void extractData() const;
00285
00286 protected:
00287
00288 void init()
00289 {
00290 m_info = InvalidInput;
00291 m_isInitialized = false;
00292 m_numeric = 0;
00293 m_symbolic = 0;
00294 m_outerIndexPtr = 0;
00295 m_innerIndexPtr = 0;
00296 m_valuePtr = 0;
00297 m_extractedDataAreDirty = true;
00298 }
00299
00300 template<typename InputMatrixType>
00301 void grapInput_impl(const InputMatrixType& mat, internal::true_type)
00302 {
00303 m_copyMatrix.resize(mat.rows(), mat.cols());
00304 if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() )
00305 {
00306
00307 m_copyMatrix = mat;
00308 m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
00309 m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
00310 m_valuePtr = m_copyMatrix.valuePtr();
00311 }
00312 else
00313 {
00314 m_outerIndexPtr = mat.outerIndexPtr();
00315 m_innerIndexPtr = mat.innerIndexPtr();
00316 m_valuePtr = mat.valuePtr();
00317 }
00318 }
00319
00320 template<typename InputMatrixType>
00321 void grapInput_impl(const InputMatrixType& mat, internal::false_type)
00322 {
00323 m_copyMatrix = mat;
00324 m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
00325 m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
00326 m_valuePtr = m_copyMatrix.valuePtr();
00327 }
00328
00329 template<typename InputMatrixType>
00330 void grapInput(const InputMatrixType& mat)
00331 {
00332 grapInput_impl(mat, internal::umfpack_helper_is_sparse_plain<InputMatrixType>());
00333 }
00334
00335 void analyzePattern_impl()
00336 {
00337 int errorCode = 0;
00338 errorCode = umfpack_symbolic(m_copyMatrix.rows(), m_copyMatrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
00339 &m_symbolic, 0, 0);
00340
00341 m_isInitialized = true;
00342 m_info = errorCode ? InvalidInput : Success;
00343 m_analysisIsOk = true;
00344 m_factorizationIsOk = false;
00345 m_extractedDataAreDirty = true;
00346 }
00347
00348 void factorize_impl()
00349 {
00350 int errorCode;
00351 errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
00352 m_symbolic, &m_numeric, 0, 0);
00353
00354 m_info = errorCode ? NumericalIssue : Success;
00355 m_factorizationIsOk = true;
00356 m_extractedDataAreDirty = true;
00357 }
00358
00359
00360 mutable LUMatrixType m_l;
00361 mutable LUMatrixType m_u;
00362 mutable IntColVectorType m_p;
00363 mutable IntRowVectorType m_q;
00364
00365 UmfpackMatrixType m_copyMatrix;
00366 const Scalar* m_valuePtr;
00367 const int* m_outerIndexPtr;
00368 const int* m_innerIndexPtr;
00369 void* m_numeric;
00370 void* m_symbolic;
00371
00372 mutable ComputationInfo m_info;
00373 bool m_isInitialized;
00374 int m_factorizationIsOk;
00375 int m_analysisIsOk;
00376 mutable bool m_extractedDataAreDirty;
00377
00378 private:
00379 UmfPackLU(UmfPackLU& ) { }
00380 };
00381
00382
00383 template<typename MatrixType>
00384 void UmfPackLU<MatrixType>::extractData() const
00385 {
00386 if (m_extractedDataAreDirty)
00387 {
00388
00389 int lnz, unz, rows, cols, nz_udiag;
00390 umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
00391
00392
00393 m_l.resize(rows,(std::min)(rows,cols));
00394 m_l.resizeNonZeros(lnz);
00395
00396 m_u.resize((std::min)(rows,cols),cols);
00397 m_u.resizeNonZeros(unz);
00398
00399 m_p.resize(rows);
00400 m_q.resize(cols);
00401
00402
00403 umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
00404 m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
00405 m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
00406
00407 m_extractedDataAreDirty = false;
00408 }
00409 }
00410
00411 template<typename MatrixType>
00412 typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
00413 {
00414 Scalar det;
00415 umfpack_get_determinant(&det, 0, m_numeric, 0);
00416 return det;
00417 }
00418
00419 template<typename MatrixType>
00420 template<typename BDerived,typename XDerived>
00421 bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
00422 {
00423 const int rhsCols = b.cols();
00424 eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
00425 eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
00426 eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
00427
00428 int errorCode;
00429 for (int j=0; j<rhsCols; ++j)
00430 {
00431 errorCode = umfpack_solve(UMFPACK_A,
00432 m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
00433 &x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
00434 if (errorCode!=0)
00435 return false;
00436 }
00437
00438 return true;
00439 }
00440
00441
00442 namespace internal {
00443
00444 template<typename _MatrixType, typename Rhs>
00445 struct solve_retval<UmfPackLU<_MatrixType>, Rhs>
00446 : solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
00447 {
00448 typedef UmfPackLU<_MatrixType> Dec;
00449 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00450
00451 template<typename Dest> void evalTo(Dest& dst) const
00452 {
00453 dec()._solve(rhs(),dst);
00454 }
00455 };
00456
00457 template<typename _MatrixType, typename Rhs>
00458 struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
00459 : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
00460 {
00461 typedef UmfPackLU<_MatrixType> Dec;
00462 EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
00463
00464 template<typename Dest> void evalTo(Dest& dst) const
00465 {
00466 this->defaultEvalTo(dst);
00467 }
00468 };
00469
00470 }
00471
00472 }
00473
00474 #endif // EIGEN_UMFPACKSUPPORT_H