00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00011 #define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00012
00013 namespace Eigen {
00014
00015 namespace internal {
00016
00017
00018
00019
00020
00021
00022
00023 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
00024 struct selfadjoint_matrix_vector_product;
00025
00026 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
00027 struct selfadjoint_matrix_vector_product
00028
00029 {
00030 static EIGEN_DONT_INLINE void run(
00031 Index size,
00032 const Scalar* lhs, Index lhsStride,
00033 const Scalar* _rhs, Index rhsIncr,
00034 Scalar* res,
00035 Scalar alpha);
00036 };
00037
00038 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
00039 EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,Version>::run(
00040 Index size,
00041 const Scalar* lhs, Index lhsStride,
00042 const Scalar* _rhs, Index rhsIncr,
00043 Scalar* res,
00044 Scalar alpha)
00045 {
00046 typedef typename packet_traits<Scalar>::type Packet;
00047 const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
00048
00049 enum {
00050 IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
00051 IsLower = UpLo == Lower ? 1 : 0,
00052 FirstTriangular = IsRowMajor == IsLower
00053 };
00054
00055 conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> cj0;
00056 conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
00057 conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;
00058
00059 conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0;
00060 conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;
00061
00062 Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;
00063
00064
00065
00066
00067 ei_declare_aligned_stack_constructed_variable(Scalar,rhs,size,rhsIncr==1 ? const_cast<Scalar*>(_rhs) : 0);
00068 if (rhsIncr!=1)
00069 {
00070 const Scalar* it = _rhs;
00071 for (Index i=0; i<size; ++i, it+=rhsIncr)
00072 rhs[i] = *it;
00073 }
00074
00075 Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
00076 if (FirstTriangular)
00077 bound = size - bound;
00078
00079 for (Index j=FirstTriangular ? bound : 0;
00080 j<(FirstTriangular ? size : bound);j+=2)
00081 {
00082 const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00083 const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
00084
00085 Scalar t0 = cjAlpha * rhs[j];
00086 Packet ptmp0 = pset1<Packet>(t0);
00087 Scalar t1 = cjAlpha * rhs[j+1];
00088 Packet ptmp1 = pset1<Packet>(t1);
00089
00090 Scalar t2(0);
00091 Packet ptmp2 = pset1<Packet>(t2);
00092 Scalar t3(0);
00093 Packet ptmp3 = pset1<Packet>(t3);
00094
00095 size_t starti = FirstTriangular ? 0 : j+2;
00096 size_t endi = FirstTriangular ? j : size;
00097 size_t alignedStart = (starti) + internal::first_aligned(&res[starti], endi-starti);
00098 size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
00099
00100
00101 res[j] += cjd.pmul(numext::real(A0[j]), t0);
00102 res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
00103 if(FirstTriangular)
00104 {
00105 res[j] += cj0.pmul(A1[j], t1);
00106 t3 += cj1.pmul(A1[j], rhs[j]);
00107 }
00108 else
00109 {
00110 res[j+1] += cj0.pmul(A0[j+1],t0);
00111 t2 += cj1.pmul(A0[j+1], rhs[j+1]);
00112 }
00113
00114 for (size_t i=starti; i<alignedStart; ++i)
00115 {
00116 res[i] += t0 * A0[i] + t1 * A1[i];
00117 t2 += numext::conj(A0[i]) * rhs[i];
00118 t3 += numext::conj(A1[i]) * rhs[i];
00119 }
00120
00121
00122 const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart;
00123 const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart;
00124 const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
00125 Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
00126 for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
00127 {
00128 Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
00129 Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
00130 Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize;
00131 Packet Xi = pload <Packet>(resIt);
00132
00133 Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
00134 ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2);
00135 ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3);
00136 pstore(resIt,Xi); resIt += PacketSize;
00137 }
00138 for (size_t i=alignedEnd; i<endi; i++)
00139 {
00140 res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
00141 t2 += cj1.pmul(A0[i], rhs[i]);
00142 t3 += cj1.pmul(A1[i], rhs[i]);
00143 }
00144
00145 res[j] += alpha * (t2 + predux(ptmp2));
00146 res[j+1] += alpha * (t3 + predux(ptmp3));
00147 }
00148 for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
00149 {
00150 const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00151
00152 Scalar t1 = cjAlpha * rhs[j];
00153 Scalar t2(0);
00154
00155 res[j] += cjd.pmul(numext::real(A0[j]), t1);
00156 for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
00157 {
00158 res[i] += cj0.pmul(A0[i], t1);
00159 t2 += cj1.pmul(A0[i], rhs[i]);
00160 }
00161 res[j] += alpha * t2;
00162 }
00163 }
00164
00165 }
00166
00167
00168
00169
00170
00171 namespace internal {
00172 template<typename Lhs, int LhsMode, typename Rhs>
00173 struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
00174 : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
00175 {};
00176 }
00177
00178 template<typename Lhs, int LhsMode, typename Rhs>
00179 struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
00180 : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
00181 {
00182 EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00183
00184 enum {
00185 LhsUpLo = LhsMode&(Upper|Lower)
00186 };
00187
00188 SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00189
00190 template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
00191 {
00192 typedef typename Dest::Scalar ResScalar;
00193 typedef typename Base::RhsScalar RhsScalar;
00194 typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
00195
00196 eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());
00197
00198 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
00199 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
00200
00201 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
00202 * RhsBlasTraits::extractScalarFactor(m_rhs);
00203
00204 enum {
00205 EvalToDest = (Dest::InnerStrideAtCompileTime==1),
00206 UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
00207 };
00208
00209 internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
00210 internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;
00211
00212 ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
00213 EvalToDest ? dest.data() : static_dest.data());
00214
00215 ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
00216 UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
00217
00218 if(!EvalToDest)
00219 {
00220 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00221 int size = dest.size();
00222 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00223 #endif
00224 MappedDest(actualDestPtr, dest.size()) = dest;
00225 }
00226
00227 if(!UseRhs)
00228 {
00229 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00230 int size = rhs.size();
00231 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00232 #endif
00233 Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
00234 }
00235
00236
00237 internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
00238 (
00239 lhs.rows(),
00240 &lhs.coeffRef(0,0), lhs.outerStride(),
00241 actualRhsPtr, 1,
00242 actualDestPtr,
00243 actualAlpha
00244 );
00245
00246 if(!EvalToDest)
00247 dest = MappedDest(actualDestPtr, dest.size());
00248 }
00249 };
00250
00251 namespace internal {
00252 template<typename Lhs, typename Rhs, int RhsMode>
00253 struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
00254 : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
00255 {};
00256 }
00257
00258 template<typename Lhs, typename Rhs, int RhsMode>
00259 struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
00260 : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
00261 {
00262 EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00263
00264 enum {
00265 RhsUpLo = RhsMode&(Upper|Lower)
00266 };
00267
00268 SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00269
00270 template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
00271 {
00272
00273 Transpose<Dest> destT(dest);
00274 SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
00275 Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
00276 }
00277 };
00278
00279 }
00280
00281 #endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H