MathFunctions.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2007 Julien Pommier
00005 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 /* The sin, cos, exp, and log functions of this file come from
00012  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
00013  */
00014 
00015 #ifndef EIGEN_MATH_FUNCTIONS_SSE_H
00016 #define EIGEN_MATH_FUNCTIONS_SSE_H
00017 
00018 namespace Eigen {
00019 
00020 namespace internal {
00021 
00022 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00023 Packet4f plog<Packet4f>(const Packet4f& _x)
00024 {
00025   Packet4f x = _x;
00026   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00027   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00028   _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
00029 
00030   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
00031 
00032   /* the smallest non denormalized float number */
00033   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos,  0x00800000);
00034   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf,     0xff800000);//-1.f/0.f);
00035   
00036   /* natural logarithm computed for 4 simultaneous float
00037     return NaN for x <= 0
00038   */
00039   _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
00040   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
00041   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
00042   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
00043   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
00044   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
00045   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
00046   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
00047   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
00048   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
00049   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
00050   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
00051 
00052 
00053   Packet4i emm0;
00054 
00055   Packet4f invalid_mask = _mm_cmpnge_ps(x, _mm_setzero_ps()); // not greater equal is true if x is NaN
00056   Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps());
00057 
00058   x = pmax(x, p4f_min_norm_pos);  /* cut off denormalized stuff */
00059   emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
00060 
00061   /* keep only the fractional part */
00062   x = _mm_and_ps(x, p4f_inv_mant_mask);
00063   x = _mm_or_ps(x, p4f_half);
00064 
00065   emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
00066   Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
00067 
00068   /* part2:
00069      if( x < SQRTHF ) {
00070        e -= 1;
00071        x = x + x - 1.0;
00072      } else { x = x - 1.0; }
00073   */
00074   Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
00075   Packet4f tmp = _mm_and_ps(x, mask);
00076   x = psub(x, p4f_1);
00077   e = psub(e, _mm_and_ps(p4f_1, mask));
00078   x = padd(x, tmp);
00079 
00080   Packet4f x2 = pmul(x,x);
00081   Packet4f x3 = pmul(x2,x);
00082 
00083   Packet4f y, y1, y2;
00084   y  = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
00085   y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
00086   y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
00087   y  = pmadd(y , x, p4f_cephes_log_p2);
00088   y1 = pmadd(y1, x, p4f_cephes_log_p5);
00089   y2 = pmadd(y2, x, p4f_cephes_log_p8);
00090   y = pmadd(y, x3, y1);
00091   y = pmadd(y, x3, y2);
00092   y = pmul(y, x3);
00093 
00094   y1 = pmul(e, p4f_cephes_log_q1);
00095   tmp = pmul(x2, p4f_half);
00096   y = padd(y, y1);
00097   x = psub(x, tmp);
00098   y2 = pmul(e, p4f_cephes_log_q2);
00099   x = padd(x, y);
00100   x = padd(x, y2);
00101   // negative arg will be NAN, 0 will be -INF
00102   return _mm_or_ps(_mm_andnot_ps(iszero_mask, _mm_or_ps(x, invalid_mask)),
00103                    _mm_and_ps(iszero_mask, p4f_minus_inf));
00104 }
00105 
00106 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00107 Packet4f pexp<Packet4f>(const Packet4f& _x)
00108 {
00109   Packet4f x = _x;
00110   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00111   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00112   _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
00113 
00114 
00115   _EIGEN_DECLARE_CONST_Packet4f(exp_hi,  88.3762626647950f);
00116   _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
00117 
00118   _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
00119   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
00120   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
00121 
00122   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
00123   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
00124   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
00125   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
00126   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
00127   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
00128 
00129   Packet4f tmp = _mm_setzero_ps(), fx;
00130   Packet4i emm0;
00131 
00132   // clamp x
00133   x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
00134 
00135   /* express exp(x) as exp(g + n*log(2)) */
00136   fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
00137 
00138 #ifdef EIGEN_VECTORIZE_SSE4_1
00139   fx = _mm_floor_ps(fx);
00140 #else
00141   emm0 = _mm_cvttps_epi32(fx);
00142   tmp  = _mm_cvtepi32_ps(emm0);
00143   /* if greater, substract 1 */
00144   Packet4f mask = _mm_cmpgt_ps(tmp, fx);
00145   mask = _mm_and_ps(mask, p4f_1);
00146   fx = psub(tmp, mask);
00147 #endif
00148 
00149   tmp = pmul(fx, p4f_cephes_exp_C1);
00150   Packet4f z = pmul(fx, p4f_cephes_exp_C2);
00151   x = psub(x, tmp);
00152   x = psub(x, z);
00153 
00154   z = pmul(x,x);
00155 
00156   Packet4f y = p4f_cephes_exp_p0;
00157   y = pmadd(y, x, p4f_cephes_exp_p1);
00158   y = pmadd(y, x, p4f_cephes_exp_p2);
00159   y = pmadd(y, x, p4f_cephes_exp_p3);
00160   y = pmadd(y, x, p4f_cephes_exp_p4);
00161   y = pmadd(y, x, p4f_cephes_exp_p5);
00162   y = pmadd(y, z, x);
00163   y = padd(y, p4f_1);
00164 
00165   // build 2^n
00166   emm0 = _mm_cvttps_epi32(fx);
00167   emm0 = _mm_add_epi32(emm0, p4i_0x7f);
00168   emm0 = _mm_slli_epi32(emm0, 23);
00169   return pmax(pmul(y, Packet4f(_mm_castsi128_ps(emm0))), _x);
00170 }
00171 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00172 Packet2d pexp<Packet2d>(const Packet2d& _x)
00173 {
00174   Packet2d x = _x;
00175 
00176   _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0);
00177   _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0);
00178   _EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
00179 
00180   _EIGEN_DECLARE_CONST_Packet2d(exp_hi,  709.437);
00181   _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303);
00182 
00183   _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
00184 
00185   _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
00186   _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
00187   _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
00188 
00189   _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
00190   _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
00191   _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
00192   _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
00193 
00194   _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
00195   _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
00196   static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0);
00197 
00198   Packet2d tmp = _mm_setzero_pd(), fx;
00199   Packet4i emm0;
00200 
00201   // clamp x
00202   x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo);
00203   /* express exp(x) as exp(g + n*log(2)) */
00204   fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half);
00205 
00206 #ifdef EIGEN_VECTORIZE_SSE4_1
00207   fx = _mm_floor_pd(fx);
00208 #else
00209   emm0 = _mm_cvttpd_epi32(fx);
00210   tmp  = _mm_cvtepi32_pd(emm0);
00211   /* if greater, substract 1 */
00212   Packet2d mask = _mm_cmpgt_pd(tmp, fx);
00213   mask = _mm_and_pd(mask, p2d_1);
00214   fx = psub(tmp, mask);
00215 #endif
00216 
00217   tmp = pmul(fx, p2d_cephes_exp_C1);
00218   Packet2d z = pmul(fx, p2d_cephes_exp_C2);
00219   x = psub(x, tmp);
00220   x = psub(x, z);
00221 
00222   Packet2d x2 = pmul(x,x);
00223 
00224   Packet2d px = p2d_cephes_exp_p0;
00225   px = pmadd(px, x2, p2d_cephes_exp_p1);
00226   px = pmadd(px, x2, p2d_cephes_exp_p2);
00227   px = pmul (px, x);
00228 
00229   Packet2d qx = p2d_cephes_exp_q0;
00230   qx = pmadd(qx, x2, p2d_cephes_exp_q1);
00231   qx = pmadd(qx, x2, p2d_cephes_exp_q2);
00232   qx = pmadd(qx, x2, p2d_cephes_exp_q3);
00233 
00234   x = pdiv(px,psub(qx,px));
00235   x = pmadd(p2d_2,x,p2d_1);
00236 
00237   // build 2^n
00238   emm0 = _mm_cvttpd_epi32(fx);
00239   emm0 = _mm_add_epi32(emm0, p4i_1023_0);
00240   emm0 = _mm_slli_epi32(emm0, 20);
00241   emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3));
00242   return pmax(pmul(x, Packet2d(_mm_castsi128_pd(emm0))), _x);
00243 }
00244 
00245 /* evaluation of 4 sines at onces, using SSE2 intrinsics.
00246 
00247    The code is the exact rewriting of the cephes sinf function.
00248    Precision is excellent as long as x < 8192 (I did not bother to
00249    take into account the special handling they have for greater values
00250    -- it does not return garbage for arguments over 8192, though, but
00251    the extra precision is missing).
00252 
00253    Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
00254    surprising but correct result.
00255 */
00256 
00257 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00258 Packet4f psin<Packet4f>(const Packet4f& _x)
00259 {
00260   Packet4f x = _x;
00261   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00262   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00263 
00264   _EIGEN_DECLARE_CONST_Packet4i(1, 1);
00265   _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
00266   _EIGEN_DECLARE_CONST_Packet4i(2, 2);
00267   _EIGEN_DECLARE_CONST_Packet4i(4, 4);
00268 
00269   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
00270 
00271   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
00272   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
00273   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
00274   _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
00275   _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
00276   _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
00277   _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
00278   _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
00279   _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
00280   _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
00281 
00282   Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
00283 
00284   Packet4i emm0, emm2;
00285   sign_bit = x;
00286   /* take the absolute value */
00287   x = pabs(x);
00288 
00289   /* take the modulo */
00290 
00291   /* extract the sign bit (upper one) */
00292   sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
00293 
00294   /* scale by 4/Pi */
00295   y = pmul(x, p4f_cephes_FOPI);
00296 
00297   /* store the integer part of y in mm0 */
00298   emm2 = _mm_cvttps_epi32(y);
00299   /* j=(j+1) & (~1) (see the cephes sources) */
00300   emm2 = _mm_add_epi32(emm2, p4i_1);
00301   emm2 = _mm_and_si128(emm2, p4i_not1);
00302   y = _mm_cvtepi32_ps(emm2);
00303   /* get the swap sign flag */
00304   emm0 = _mm_and_si128(emm2, p4i_4);
00305   emm0 = _mm_slli_epi32(emm0, 29);
00306   /* get the polynom selection mask
00307      there is one polynom for 0 <= x <= Pi/4
00308      and another one for Pi/4<x<=Pi/2
00309 
00310      Both branches will be computed.
00311   */
00312   emm2 = _mm_and_si128(emm2, p4i_2);
00313   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
00314 
00315   Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
00316   Packet4f poly_mask = _mm_castsi128_ps(emm2);
00317   sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
00318 
00319   /* The magic pass: "Extended precision modular arithmetic"
00320      x = ((x - y * DP1) - y * DP2) - y * DP3; */
00321   xmm1 = pmul(y, p4f_minus_cephes_DP1);
00322   xmm2 = pmul(y, p4f_minus_cephes_DP2);
00323   xmm3 = pmul(y, p4f_minus_cephes_DP3);
00324   x = padd(x, xmm1);
00325   x = padd(x, xmm2);
00326   x = padd(x, xmm3);
00327 
00328   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
00329   y = p4f_coscof_p0;
00330   Packet4f z = _mm_mul_ps(x,x);
00331 
00332   y = pmadd(y, z, p4f_coscof_p1);
00333   y = pmadd(y, z, p4f_coscof_p2);
00334   y = pmul(y, z);
00335   y = pmul(y, z);
00336   Packet4f tmp = pmul(z, p4f_half);
00337   y = psub(y, tmp);
00338   y = padd(y, p4f_1);
00339 
00340   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
00341 
00342   Packet4f y2 = p4f_sincof_p0;
00343   y2 = pmadd(y2, z, p4f_sincof_p1);
00344   y2 = pmadd(y2, z, p4f_sincof_p2);
00345   y2 = pmul(y2, z);
00346   y2 = pmul(y2, x);
00347   y2 = padd(y2, x);
00348 
00349   /* select the correct result from the two polynoms */
00350   y2 = _mm_and_ps(poly_mask, y2);
00351   y = _mm_andnot_ps(poly_mask, y);
00352   y = _mm_or_ps(y,y2);
00353   /* update the sign */
00354   return _mm_xor_ps(y, sign_bit);
00355 }
00356 
00357 /* almost the same as psin */
00358 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00359 Packet4f pcos<Packet4f>(const Packet4f& _x)
00360 {
00361   Packet4f x = _x;
00362   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00363   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00364 
00365   _EIGEN_DECLARE_CONST_Packet4i(1, 1);
00366   _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
00367   _EIGEN_DECLARE_CONST_Packet4i(2, 2);
00368   _EIGEN_DECLARE_CONST_Packet4i(4, 4);
00369 
00370   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
00371   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
00372   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
00373   _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
00374   _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
00375   _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
00376   _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
00377   _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
00378   _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
00379   _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
00380 
00381   Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
00382   Packet4i emm0, emm2;
00383 
00384   x = pabs(x);
00385 
00386   /* scale by 4/Pi */
00387   y = pmul(x, p4f_cephes_FOPI);
00388 
00389   /* get the integer part of y */
00390   emm2 = _mm_cvttps_epi32(y);
00391   /* j=(j+1) & (~1) (see the cephes sources) */
00392   emm2 = _mm_add_epi32(emm2, p4i_1);
00393   emm2 = _mm_and_si128(emm2, p4i_not1);
00394   y = _mm_cvtepi32_ps(emm2);
00395 
00396   emm2 = _mm_sub_epi32(emm2, p4i_2);
00397 
00398   /* get the swap sign flag */
00399   emm0 = _mm_andnot_si128(emm2, p4i_4);
00400   emm0 = _mm_slli_epi32(emm0, 29);
00401   /* get the polynom selection mask */
00402   emm2 = _mm_and_si128(emm2, p4i_2);
00403   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
00404 
00405   Packet4f sign_bit = _mm_castsi128_ps(emm0);
00406   Packet4f poly_mask = _mm_castsi128_ps(emm2);
00407 
00408   /* The magic pass: "Extended precision modular arithmetic"
00409      x = ((x - y * DP1) - y * DP2) - y * DP3; */
00410   xmm1 = pmul(y, p4f_minus_cephes_DP1);
00411   xmm2 = pmul(y, p4f_minus_cephes_DP2);
00412   xmm3 = pmul(y, p4f_minus_cephes_DP3);
00413   x = padd(x, xmm1);
00414   x = padd(x, xmm2);
00415   x = padd(x, xmm3);
00416 
00417   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
00418   y = p4f_coscof_p0;
00419   Packet4f z = pmul(x,x);
00420 
00421   y = pmadd(y,z,p4f_coscof_p1);
00422   y = pmadd(y,z,p4f_coscof_p2);
00423   y = pmul(y, z);
00424   y = pmul(y, z);
00425   Packet4f tmp = _mm_mul_ps(z, p4f_half);
00426   y = psub(y, tmp);
00427   y = padd(y, p4f_1);
00428 
00429   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
00430   Packet4f y2 = p4f_sincof_p0;
00431   y2 = pmadd(y2, z, p4f_sincof_p1);
00432   y2 = pmadd(y2, z, p4f_sincof_p2);
00433   y2 = pmul(y2, z);
00434   y2 = pmadd(y2, x, x);
00435 
00436   /* select the correct result from the two polynoms */
00437   y2 = _mm_and_ps(poly_mask, y2);
00438   y  = _mm_andnot_ps(poly_mask, y);
00439   y  = _mm_or_ps(y,y2);
00440 
00441   /* update the sign */
00442   return _mm_xor_ps(y, sign_bit);
00443 }
00444 
00445 #if EIGEN_FAST_MATH
00446 
00447 // This is based on Quake3's fast inverse square root.
00448 // For detail see here: http://www.beyond3d.com/content/articles/8/
00449 // It lacks 1 (or 2 bits in some rare cases) of precision, and does not handle negative, +inf, or denormalized numbers correctly.
00450 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00451 Packet4f psqrt<Packet4f>(const Packet4f& _x)
00452 {
00453   Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
00454 
00455   /* select only the inverse sqrt of non-zero inputs */
00456   Packet4f non_zero_mask = _mm_cmpge_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)()));
00457   Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
00458 
00459   x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
00460   return pmul(_x,x);
00461 }
00462 
00463 #else
00464 
00465 template<> EIGEN_STRONG_INLINE Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
00466 
00467 #endif
00468 
00469 template<> EIGEN_STRONG_INLINE Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }
00470 
00471 } // end namespace internal
00472 
00473 } // end namespace Eigen
00474 
00475 #endif // EIGEN_MATH_FUNCTIONS_SSE_H


turtlebot_exploration_3d
Author(s): Bona , Shawn
autogenerated on Thu Jun 6 2019 20:59:04