00001 /****************************************************************************** 00002 Copyright (c) 2018, Alexander W. Winkler. All rights reserved. 00003 00004 Redistribution and use in source and binary forms, with or without 00005 modification, are permitted provided that the following conditions are met: 00006 00007 * Redistributions of source code must retain the above copyright notice, this 00008 list of conditions and the following disclaimer. 00009 00010 * Redistributions in binary form must reproduce the above copyright notice, 00011 this list of conditions and the following disclaimer in the documentation 00012 and/or other materials provided with the distribution. 00013 00014 * Neither the name of the copyright holder nor the names of its 00015 contributors may be used to endorse or promote products derived from 00016 this software without specific prior written permission. 00017 00018 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00019 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00020 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 00021 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 00022 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 00023 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 00024 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00025 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 00026 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 00027 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00028 ******************************************************************************/ 00029 00030 #include <towr/initialization/gait_generator.h> 00031 #include <towr_ros/towr_ros_interface.h> 00032 00033 00034 namespace towr { 00035 00042 class TowrRosApp : public TowrRosInterface { 00043 public: 00047 void SetTowrInitialState() override 00048 { 00049 auto nominal_stance_B = formulation_.model_.kinematic_model_->GetNominalStanceInBase(); 00050 00051 double z_ground = 0.0; 00052 formulation_.initial_ee_W_ = nominal_stance_B; 00053 std::for_each(formulation_.initial_ee_W_.begin(), formulation_.initial_ee_W_.end(), 00054 [&](Vector3d& p){ p.z() = z_ground; } // feet at 0 height 00055 ); 00056 00057 formulation_.initial_base_.lin.at(kPos).z() = - nominal_stance_B.front().z() + z_ground; 00058 } 00059 00063 Parameters GetTowrParameters(int n_ee, const TowrCommandMsg& msg) const override 00064 { 00065 Parameters params; 00066 00067 // Instead of manually defining the initial durations for each foot and 00068 // step, for convenience we use a GaitGenerator with some predefined gaits 00069 // for a variety of robots (walk, trot, pace, ...). 00070 auto gait_gen_ = GaitGenerator::MakeGaitGenerator(n_ee); 00071 auto id_gait = static_cast<GaitGenerator::Combos>(msg.gait); 00072 gait_gen_->SetCombo(id_gait); 00073 for (int ee=0; ee<n_ee; ++ee) { 00074 params.ee_phase_durations_.push_back(gait_gen_->GetPhaseDurations(msg.total_duration, ee)); 00075 params.ee_in_contact_at_start_.push_back(gait_gen_->IsInContactAtStart(ee)); 00076 } 00077 00078 // Here you can also add other constraints or change parameters 00079 // params.constraints_.push_back(Parameters::BaseRom); 00080 00081 // increases optimization time, but sometimes helps find a solution for 00082 // more difficult terrain. 00083 if (msg.optimize_phase_durations) 00084 params.OptimizePhaseDurations(); 00085 00086 return params; 00087 } 00088 00092 void SetIpoptParameters(const TowrCommandMsg& msg) override 00093 { 00094 // the HA-L solvers are alot faster, so consider installing and using 00095 solver_->SetOption("linear_solver", "mumps"); // ma27, ma57 00096 00097 // Analytically defining the derivatives in IFOPT as we do it, makes the 00098 // problem a lot faster. However, if this becomes too difficult, we can also 00099 // tell IPOPT to just approximate them using finite differences. However, 00100 // this uses numerical derivatives for ALL constraints, there doesn't yet 00101 // exist an option to turn on numerical derivatives for only some constraint 00102 // sets. 00103 solver_->SetOption("jacobian_approximation", "exact"); // finite difference-values 00104 00105 // This is a great to test if the analytical derivatives implemented in are 00106 // correct. Some derivatives that are correct are still flagged, showing a 00107 // deviation of 10e-4, which is fine. What to watch out for is deviations > 10e-2. 00108 // solver_->SetOption("derivative_test", "first-order"); 00109 00110 solver_->SetOption("max_cpu_time", 40.0); 00111 solver_->SetOption("print_level", 5); 00112 00113 if (msg.play_initialization) 00114 solver_->SetOption("max_iter", 0); 00115 else 00116 solver_->SetOption("max_iter", 3000); 00117 } 00118 }; 00119 00120 } // namespace towr 00121 00122 00123 int main(int argc, char *argv[]) 00124 { 00125 ros::init(argc, argv, "my_towr_ros_app"); 00126 towr::TowrRosApp towr_app; 00127 ros::spin(); 00128 00129 return 1; 00130 }