polynomialsolver.cpp
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #include "main.h"
00011 #include <unsupported/Eigen/Polynomials>
00012 #include <iostream>
00013 #include <algorithm>
00014 
00015 using namespace std;
00016 
00017 namespace Eigen {
00018 namespace internal {
00019 template<int Size>
00020 struct increment_if_fixed_size
00021 {
00022   enum {
00023     ret = (Size == Dynamic) ? Dynamic : Size+1
00024   };
00025 };
00026 }
00027 }
00028 
00029 
00030 template<int Deg, typename POLYNOMIAL, typename SOLVER>
00031 bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve )
00032 {
00033   typedef typename POLYNOMIAL::Index Index;
00034   typedef typename POLYNOMIAL::Scalar Scalar;
00035 
00036   typedef typename SOLVER::RootsType    RootsType;
00037   typedef Matrix<Scalar,Deg,1>          EvalRootsType;
00038 
00039   const Index deg = pols.size()-1;
00040 
00041   psolve.compute( pols );
00042   const RootsType& roots( psolve.roots() );
00043   EvalRootsType evr( deg );
00044   for( int i=0; i<roots.size(); ++i ){
00045     evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
00046 
00047   bool evalToZero = evr.isZero( test_precision<Scalar>() );
00048   if( !evalToZero )
00049   {
00050     cerr << "WRONG root: " << endl;
00051     cerr << "Polynomial: " << pols.transpose() << endl;
00052     cerr << "Roots found: " << roots.transpose() << endl;
00053     cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl;
00054     cerr << endl;
00055   }
00056 
00057   std::vector<Scalar> rootModuli( roots.size() );
00058   Map< EvalRootsType > aux( &rootModuli[0], roots.size() );
00059   aux = roots.array().abs();
00060   std::sort( rootModuli.begin(), rootModuli.end() );
00061   bool distinctModuli=true;
00062   for( size_t i=1; i<rootModuli.size() && distinctModuli; ++i )
00063   {
00064     if( internal::isApprox( rootModuli[i], rootModuli[i-1] ) ){
00065       distinctModuli = false; }
00066   }
00067   VERIFY( evalToZero || !distinctModuli );
00068 
00069   return distinctModuli;
00070 }
00071 
00072 
00073 
00074 
00075 
00076 
00077 
00078 template<int Deg, typename POLYNOMIAL>
00079 void evalSolver( const POLYNOMIAL& pols )
00080 {
00081   typedef typename POLYNOMIAL::Scalar Scalar;
00082 
00083   typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType;
00084 
00085   PolynomialSolverType psolve;
00086   aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve );
00087 }
00088 
00089 
00090 
00091 
00092 template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS >
00093 void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots )
00094 {
00095   using std::sqrt;
00096   typedef typename POLYNOMIAL::Scalar Scalar;
00097 
00098   typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType;
00099 
00100   PolynomialSolverType psolve;
00101   if( aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) )
00102   {
00103     //It is supposed that
00104     // 1) the roots found are correct
00105     // 2) the roots have distinct moduli
00106 
00107     typedef typename REAL_ROOTS::Scalar                 Real;
00108 
00109     //Test realRoots
00110     std::vector< Real > calc_realRoots;
00111     psolve.realRoots( calc_realRoots );
00112     VERIFY( calc_realRoots.size() == (size_t)real_roots.size() );
00113 
00114     const Scalar psPrec = sqrt( test_precision<Scalar>() );
00115 
00116     for( size_t i=0; i<calc_realRoots.size(); ++i )
00117     {
00118       bool found = false;
00119       for( size_t j=0; j<calc_realRoots.size()&& !found; ++j )
00120       {
00121         if( internal::isApprox( calc_realRoots[i], real_roots[j] ), psPrec ){
00122           found = true; }
00123       }
00124       VERIFY( found );
00125     }
00126 
00127     //Test greatestRoot
00128     VERIFY( internal::isApprox( roots.array().abs().maxCoeff(),
00129           abs( psolve.greatestRoot() ), psPrec ) );
00130 
00131     //Test smallestRoot
00132     VERIFY( internal::isApprox( roots.array().abs().minCoeff(),
00133           abs( psolve.smallestRoot() ), psPrec ) );
00134 
00135     bool hasRealRoot;
00136     //Test absGreatestRealRoot
00137     Real r = psolve.absGreatestRealRoot( hasRealRoot );
00138     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
00139     if( hasRealRoot ){
00140       VERIFY( internal::isApprox( real_roots.array().abs().maxCoeff(), abs(r), psPrec ) );  }
00141 
00142     //Test absSmallestRealRoot
00143     r = psolve.absSmallestRealRoot( hasRealRoot );
00144     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
00145     if( hasRealRoot ){
00146       VERIFY( internal::isApprox( real_roots.array().abs().minCoeff(), abs( r ), psPrec ) ); }
00147 
00148     //Test greatestRealRoot
00149     r = psolve.greatestRealRoot( hasRealRoot );
00150     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
00151     if( hasRealRoot ){
00152       VERIFY( internal::isApprox( real_roots.array().maxCoeff(), r, psPrec ) ); }
00153 
00154     //Test smallestRealRoot
00155     r = psolve.smallestRealRoot( hasRealRoot );
00156     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
00157     if( hasRealRoot ){
00158     VERIFY( internal::isApprox( real_roots.array().minCoeff(), r, psPrec ) ); }
00159   }
00160 }
00161 
00162 
00163 template<typename _Scalar, int _Deg>
00164 void polynomialsolver(int deg)
00165 {
00166   typedef internal::increment_if_fixed_size<_Deg>            Dim;
00167   typedef Matrix<_Scalar,Dim::ret,1>                  PolynomialType;
00168   typedef Matrix<_Scalar,_Deg,1>                      EvalRootsType;
00169 
00170   cout << "Standard cases" << endl;
00171   PolynomialType pols = PolynomialType::Random(deg+1);
00172   evalSolver<_Deg,PolynomialType>( pols );
00173 
00174   cout << "Hard cases" << endl;
00175   _Scalar multipleRoot = internal::random<_Scalar>();
00176   EvalRootsType allRoots = EvalRootsType::Constant(deg,multipleRoot);
00177   roots_to_monicPolynomial( allRoots, pols );
00178   evalSolver<_Deg,PolynomialType>( pols );
00179 
00180   cout << "Test sugar" << endl;
00181   EvalRootsType realRoots = EvalRootsType::Random(deg);
00182   roots_to_monicPolynomial( realRoots, pols );
00183   evalSolverSugarFunction<_Deg>(
00184       pols,
00185       realRoots.template cast <
00186                     std::complex<
00187                          typename NumTraits<_Scalar>::Real
00188                          >
00189                     >(),
00190       realRoots );
00191 }
00192 
00193 void test_polynomialsolver()
00194 {
00195   for(int i = 0; i < g_repeat; i++)
00196   {
00197     CALL_SUBTEST_1( (polynomialsolver<float,1>(1)) );
00198     CALL_SUBTEST_2( (polynomialsolver<double,2>(2)) );
00199     CALL_SUBTEST_3( (polynomialsolver<double,3>(3)) );
00200     CALL_SUBTEST_4( (polynomialsolver<float,4>(4)) );
00201     CALL_SUBTEST_5( (polynomialsolver<double,5>(5)) );
00202     CALL_SUBTEST_6( (polynomialsolver<float,6>(6)) );
00203     CALL_SUBTEST_7( (polynomialsolver<float,7>(7)) );
00204     CALL_SUBTEST_8( (polynomialsolver<double,8>(8)) );
00205 
00206     CALL_SUBTEST_9( (polynomialsolver<float,Dynamic>(
00207             internal::random<int>(9,13)
00208             )) );
00209     CALL_SUBTEST_10((polynomialsolver<double,Dynamic>(
00210             internal::random<int>(9,13)
00211             )) );
00212   }
00213 }


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:34:28