dogleg.h
Go to the documentation of this file.
00001 namespace Eigen { 
00002 
00003 namespace internal {
00004 
00005 template <typename Scalar>
00006 void dogleg(
00007         const Matrix< Scalar, Dynamic, Dynamic >  &qrfac,
00008         const Matrix< Scalar, Dynamic, 1 >  &diag,
00009         const Matrix< Scalar, Dynamic, 1 >  &qtb,
00010         Scalar delta,
00011         Matrix< Scalar, Dynamic, 1 >  &x)
00012 {
00013     using std::abs;
00014     using std::sqrt;
00015     
00016     typedef DenseIndex Index;
00017 
00018     /* Local variables */
00019     Index i, j;
00020     Scalar sum, temp, alpha, bnorm;
00021     Scalar gnorm, qnorm;
00022     Scalar sgnorm;
00023 
00024     /* Function Body */
00025     const Scalar epsmch = NumTraits<Scalar>::epsilon();
00026     const Index n = qrfac.cols();
00027     eigen_assert(n==qtb.size());
00028     eigen_assert(n==x.size());
00029     eigen_assert(n==diag.size());
00030     Matrix< Scalar, Dynamic, 1 >  wa1(n), wa2(n);
00031 
00032     /* first, calculate the gauss-newton direction. */
00033     for (j = n-1; j >=0; --j) {
00034         temp = qrfac(j,j);
00035         if (temp == 0.) {
00036             temp = epsmch * qrfac.col(j).head(j+1).maxCoeff();
00037             if (temp == 0.)
00038                 temp = epsmch;
00039         }
00040         if (j==n-1)
00041             x[j] = qtb[j] / temp;
00042         else
00043             x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp;
00044     }
00045 
00046     /* test whether the gauss-newton direction is acceptable. */
00047     qnorm = diag.cwiseProduct(x).stableNorm();
00048     if (qnorm <= delta)
00049         return;
00050 
00051     // TODO : this path is not tested by Eigen unit tests
00052 
00053     /* the gauss-newton direction is not acceptable. */
00054     /* next, calculate the scaled gradient direction. */
00055 
00056     wa1.fill(0.);
00057     for (j = 0; j < n; ++j) {
00058         wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j];
00059         wa1[j] /= diag[j];
00060     }
00061 
00062     /* calculate the norm of the scaled gradient and test for */
00063     /* the special case in which the scaled gradient is zero. */
00064     gnorm = wa1.stableNorm();
00065     sgnorm = 0.;
00066     alpha = delta / qnorm;
00067     if (gnorm == 0.)
00068         goto algo_end;
00069 
00070     /* calculate the point along the scaled gradient */
00071     /* at which the quadratic is minimized. */
00072     wa1.array() /= (diag*gnorm).array();
00073     // TODO : once unit tests cover this part,:
00074     // wa2 = qrfac.template triangularView<Upper>() * wa1;
00075     for (j = 0; j < n; ++j) {
00076         sum = 0.;
00077         for (i = j; i < n; ++i) {
00078             sum += qrfac(j,i) * wa1[i];
00079         }
00080         wa2[j] = sum;
00081     }
00082     temp = wa2.stableNorm();
00083     sgnorm = gnorm / temp / temp;
00084 
00085     /* test whether the scaled gradient direction is acceptable. */
00086     alpha = 0.;
00087     if (sgnorm >= delta)
00088         goto algo_end;
00089 
00090     /* the scaled gradient direction is not acceptable. */
00091     /* finally, calculate the point along the dogleg */
00092     /* at which the quadratic is minimized. */
00093     bnorm = qtb.stableNorm();
00094     temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
00095     temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs2(delta / qnorm)) * (1.-numext::abs2(sgnorm / delta)));
00096     alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp;
00097 algo_end:
00098 
00099     /* form appropriate convex combination of the gauss-newton */
00100     /* direction and the scaled gradient direction. */
00101     temp = (1.-alpha) * (std::min)(sgnorm,delta);
00102     x = temp * wa1 + alpha * x;
00103 }
00104 
00105 } // end namespace internal
00106 
00107 } // end namespace Eigen


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:30:43