SkylineMatrix.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_SKYLINEMATRIX_H
00011 #define EIGEN_SKYLINEMATRIX_H
00012 
00013 #include "SkylineStorage.h"
00014 #include "SkylineMatrixBase.h"
00015 
00016 namespace Eigen { 
00017 
00033 namespace internal {
00034 template<typename _Scalar, int _Options>
00035 struct traits<SkylineMatrix<_Scalar, _Options> > {
00036     typedef _Scalar Scalar;
00037     typedef Sparse StorageKind;
00038 
00039     enum {
00040         RowsAtCompileTime = Dynamic,
00041         ColsAtCompileTime = Dynamic,
00042         MaxRowsAtCompileTime = Dynamic,
00043         MaxColsAtCompileTime = Dynamic,
00044         Flags = SkylineBit | _Options,
00045         CoeffReadCost = NumTraits<Scalar>::ReadCost,
00046     };
00047 };
00048 }
00049 
00050 template<typename _Scalar, int _Options>
00051 class SkylineMatrix
00052 : public SkylineMatrixBase<SkylineMatrix<_Scalar, _Options> > {
00053 public:
00054     EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(SkylineMatrix)
00055     EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, +=)
00056     EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, -=)
00057 
00058     using Base::IsRowMajor;
00059 
00060 protected:
00061 
00062     typedef SkylineMatrix<Scalar, (Flags&~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0) > TransposedSkylineMatrix;
00063 
00064     Index m_outerSize;
00065     Index m_innerSize;
00066 
00067 public:
00068     Index* m_colStartIndex;
00069     Index* m_rowStartIndex;
00070     SkylineStorage<Scalar> m_data;
00071 
00072 public:
00073 
00074     inline Index rows() const {
00075         return IsRowMajor ? m_outerSize : m_innerSize;
00076     }
00077 
00078     inline Index cols() const {
00079         return IsRowMajor ? m_innerSize : m_outerSize;
00080     }
00081 
00082     inline Index innerSize() const {
00083         return m_innerSize;
00084     }
00085 
00086     inline Index outerSize() const {
00087         return m_outerSize;
00088     }
00089 
00090     inline Index upperNonZeros() const {
00091         return m_data.upperSize();
00092     }
00093 
00094     inline Index lowerNonZeros() const {
00095         return m_data.lowerSize();
00096     }
00097 
00098     inline Index upperNonZeros(Index j) const {
00099         return m_colStartIndex[j + 1] - m_colStartIndex[j];
00100     }
00101 
00102     inline Index lowerNonZeros(Index j) const {
00103         return m_rowStartIndex[j + 1] - m_rowStartIndex[j];
00104     }
00105 
00106     inline const Scalar* _diagPtr() const {
00107         return &m_data.diag(0);
00108     }
00109 
00110     inline Scalar* _diagPtr() {
00111         return &m_data.diag(0);
00112     }
00113 
00114     inline const Scalar* _upperPtr() const {
00115         return &m_data.upper(0);
00116     }
00117 
00118     inline Scalar* _upperPtr() {
00119         return &m_data.upper(0);
00120     }
00121 
00122     inline const Scalar* _lowerPtr() const {
00123         return &m_data.lower(0);
00124     }
00125 
00126     inline Scalar* _lowerPtr() {
00127         return &m_data.lower(0);
00128     }
00129 
00130     inline const Index* _upperProfilePtr() const {
00131         return &m_data.upperProfile(0);
00132     }
00133 
00134     inline Index* _upperProfilePtr() {
00135         return &m_data.upperProfile(0);
00136     }
00137 
00138     inline const Index* _lowerProfilePtr() const {
00139         return &m_data.lowerProfile(0);
00140     }
00141 
00142     inline Index* _lowerProfilePtr() {
00143         return &m_data.lowerProfile(0);
00144     }
00145 
00146     inline Scalar coeff(Index row, Index col) const {
00147         const Index outer = IsRowMajor ? row : col;
00148         const Index inner = IsRowMajor ? col : row;
00149 
00150         eigen_assert(outer < outerSize());
00151         eigen_assert(inner < innerSize());
00152 
00153         if (outer == inner)
00154             return this->m_data.diag(outer);
00155 
00156         if (IsRowMajor) {
00157             if (inner > outer) //upper matrix
00158             {
00159                 const Index minOuterIndex = inner - m_data.upperProfile(inner);
00160                 if (outer >= minOuterIndex)
00161                     return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00162                 else
00163                     return Scalar(0);
00164             }
00165             if (inner < outer) //lower matrix
00166             {
00167                 const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00168                 if (inner >= minInnerIndex)
00169                     return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00170                 else
00171                     return Scalar(0);
00172             }
00173             return m_data.upper(m_colStartIndex[inner] + outer - inner);
00174         } else {
00175             if (outer > inner) //upper matrix
00176             {
00177                 const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00178                 if (outer <= maxOuterIndex)
00179                     return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
00180                 else
00181                     return Scalar(0);
00182             }
00183             if (outer < inner) //lower matrix
00184             {
00185                 const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00186 
00187                 if (inner <= maxInnerIndex)
00188                     return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
00189                 else
00190                     return Scalar(0);
00191             }
00192         }
00193     }
00194 
00195     inline Scalar& coeffRef(Index row, Index col) {
00196         const Index outer = IsRowMajor ? row : col;
00197         const Index inner = IsRowMajor ? col : row;
00198 
00199         eigen_assert(outer < outerSize());
00200         eigen_assert(inner < innerSize());
00201 
00202         if (outer == inner)
00203             return this->m_data.diag(outer);
00204 
00205         if (IsRowMajor) {
00206             if (col > row) //upper matrix
00207             {
00208                 const Index minOuterIndex = inner - m_data.upperProfile(inner);
00209                 eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
00210                 return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00211             }
00212             if (col < row) //lower matrix
00213             {
00214                 const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00215                 eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
00216                 return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00217             }
00218         } else {
00219             if (outer > inner) //upper matrix
00220             {
00221                 const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00222                 eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
00223                 return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
00224             }
00225             if (outer < inner) //lower matrix
00226             {
00227                 const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00228                 eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
00229                 return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
00230             }
00231         }
00232     }
00233 
00234     inline Scalar coeffDiag(Index idx) const {
00235         eigen_assert(idx < outerSize());
00236         eigen_assert(idx < innerSize());
00237         return this->m_data.diag(idx);
00238     }
00239 
00240     inline Scalar coeffLower(Index row, Index col) const {
00241         const Index outer = IsRowMajor ? row : col;
00242         const Index inner = IsRowMajor ? col : row;
00243 
00244         eigen_assert(outer < outerSize());
00245         eigen_assert(inner < innerSize());
00246         eigen_assert(inner != outer);
00247 
00248         if (IsRowMajor) {
00249             const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00250             if (inner >= minInnerIndex)
00251                 return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00252             else
00253                 return Scalar(0);
00254 
00255         } else {
00256             const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00257             if (inner <= maxInnerIndex)
00258                 return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
00259             else
00260                 return Scalar(0);
00261         }
00262     }
00263 
00264     inline Scalar coeffUpper(Index row, Index col) const {
00265         const Index outer = IsRowMajor ? row : col;
00266         const Index inner = IsRowMajor ? col : row;
00267 
00268         eigen_assert(outer < outerSize());
00269         eigen_assert(inner < innerSize());
00270         eigen_assert(inner != outer);
00271 
00272         if (IsRowMajor) {
00273             const Index minOuterIndex = inner - m_data.upperProfile(inner);
00274             if (outer >= minOuterIndex)
00275                 return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00276             else
00277                 return Scalar(0);
00278         } else {
00279             const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00280             if (outer <= maxOuterIndex)
00281                 return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
00282             else
00283                 return Scalar(0);
00284         }
00285     }
00286 
00287     inline Scalar& coeffRefDiag(Index idx) {
00288         eigen_assert(idx < outerSize());
00289         eigen_assert(idx < innerSize());
00290         return this->m_data.diag(idx);
00291     }
00292 
00293     inline Scalar& coeffRefLower(Index row, Index col) {
00294         const Index outer = IsRowMajor ? row : col;
00295         const Index inner = IsRowMajor ? col : row;
00296 
00297         eigen_assert(outer < outerSize());
00298         eigen_assert(inner < innerSize());
00299         eigen_assert(inner != outer);
00300 
00301         if (IsRowMajor) {
00302             const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00303             eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
00304             return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00305         } else {
00306             const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00307             eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
00308             return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
00309         }
00310     }
00311 
00312     inline bool coeffExistLower(Index row, Index col) {
00313         const Index outer = IsRowMajor ? row : col;
00314         const Index inner = IsRowMajor ? col : row;
00315 
00316         eigen_assert(outer < outerSize());
00317         eigen_assert(inner < innerSize());
00318         eigen_assert(inner != outer);
00319 
00320         if (IsRowMajor) {
00321             const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00322             return inner >= minInnerIndex;
00323         } else {
00324             const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00325             return inner <= maxInnerIndex;
00326         }
00327     }
00328 
00329     inline Scalar& coeffRefUpper(Index row, Index col) {
00330         const Index outer = IsRowMajor ? row : col;
00331         const Index inner = IsRowMajor ? col : row;
00332 
00333         eigen_assert(outer < outerSize());
00334         eigen_assert(inner < innerSize());
00335         eigen_assert(inner != outer);
00336 
00337         if (IsRowMajor) {
00338             const Index minOuterIndex = inner - m_data.upperProfile(inner);
00339             eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
00340             return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00341         } else {
00342             const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00343             eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
00344             return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
00345         }
00346     }
00347 
00348     inline bool coeffExistUpper(Index row, Index col) {
00349         const Index outer = IsRowMajor ? row : col;
00350         const Index inner = IsRowMajor ? col : row;
00351 
00352         eigen_assert(outer < outerSize());
00353         eigen_assert(inner < innerSize());
00354         eigen_assert(inner != outer);
00355 
00356         if (IsRowMajor) {
00357             const Index minOuterIndex = inner - m_data.upperProfile(inner);
00358             return outer >= minOuterIndex;
00359         } else {
00360             const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00361             return outer <= maxOuterIndex;
00362         }
00363     }
00364 
00365 
00366 protected:
00367 
00368 public:
00369     class InnerUpperIterator;
00370     class InnerLowerIterator;
00371 
00372     class OuterUpperIterator;
00373     class OuterLowerIterator;
00374 
00376     inline void setZero() {
00377         m_data.clear();
00378         memset(m_colStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
00379         memset(m_rowStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
00380     }
00381 
00383     inline Index nonZeros() const {
00384         return m_data.diagSize() + m_data.upperSize() + m_data.lowerSize();
00385     }
00386 
00388     inline void reserve(Index reserveSize, Index reserveUpperSize, Index reserveLowerSize) {
00389         m_data.reserve(reserveSize, reserveUpperSize, reserveLowerSize);
00390     }
00391 
00400     EIGEN_DONT_INLINE Scalar & insert(Index row, Index col) {
00401         const Index outer = IsRowMajor ? row : col;
00402         const Index inner = IsRowMajor ? col : row;
00403 
00404         eigen_assert(outer < outerSize());
00405         eigen_assert(inner < innerSize());
00406 
00407         if (outer == inner)
00408             return m_data.diag(col);
00409 
00410         if (IsRowMajor) {
00411             if (outer < inner) //upper matrix
00412             {
00413                 Index minOuterIndex = 0;
00414                 minOuterIndex = inner - m_data.upperProfile(inner);
00415 
00416                 if (outer < minOuterIndex) //The value does not yet exist
00417                 {
00418                     const Index previousProfile = m_data.upperProfile(inner);
00419 
00420                     m_data.upperProfile(inner) = inner - outer;
00421 
00422 
00423                     const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
00424                     //shift data stored after this new one
00425                     const Index stop = m_colStartIndex[cols()];
00426                     const Index start = m_colStartIndex[inner];
00427 
00428 
00429                     for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
00430                         m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
00431                     }
00432 
00433                     for (Index innerIdx = cols(); innerIdx > inner; innerIdx--) {
00434                         m_colStartIndex[innerIdx] += bandIncrement;
00435                     }
00436 
00437                     //zeros new data
00438                     memset(this->_upperPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
00439 
00440                     return m_data.upper(m_colStartIndex[inner]);
00441                 } else {
00442                     return m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00443                 }
00444             }
00445 
00446             if (outer > inner) //lower matrix
00447             {
00448                 const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00449                 if (inner < minInnerIndex) //The value does not yet exist
00450                 {
00451                     const Index previousProfile = m_data.lowerProfile(outer);
00452                     m_data.lowerProfile(outer) = outer - inner;
00453 
00454                     const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
00455                     //shift data stored after this new one
00456                     const Index stop = m_rowStartIndex[rows()];
00457                     const Index start = m_rowStartIndex[outer];
00458 
00459 
00460                     for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
00461                         m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
00462                     }
00463 
00464                     for (Index innerIdx = rows(); innerIdx > outer; innerIdx--) {
00465                         m_rowStartIndex[innerIdx] += bandIncrement;
00466                     }
00467 
00468                     //zeros new data
00469                     memset(this->_lowerPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
00470                     return m_data.lower(m_rowStartIndex[outer]);
00471                 } else {
00472                     return m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00473                 }
00474             }
00475         } else {
00476             if (outer > inner) //upper matrix
00477             {
00478                 const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00479                 if (outer > maxOuterIndex) //The value does not yet exist
00480                 {
00481                     const Index previousProfile = m_data.upperProfile(inner);
00482                     m_data.upperProfile(inner) = outer - inner;
00483 
00484                     const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
00485                     //shift data stored after this new one
00486                     const Index stop = m_rowStartIndex[rows()];
00487                     const Index start = m_rowStartIndex[inner + 1];
00488 
00489                     for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
00490                         m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
00491                     }
00492 
00493                     for (Index innerIdx = inner + 1; innerIdx < outerSize() + 1; innerIdx++) {
00494                         m_rowStartIndex[innerIdx] += bandIncrement;
00495                     }
00496                     memset(this->_upperPtr() + m_rowStartIndex[inner] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
00497                     return m_data.upper(m_rowStartIndex[inner] + m_data.upperProfile(inner));
00498                 } else {
00499                     return m_data.upper(m_rowStartIndex[inner] + (outer - inner));
00500                 }
00501             }
00502 
00503             if (outer < inner) //lower matrix
00504             {
00505                 const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00506                 if (inner > maxInnerIndex) //The value does not yet exist
00507                 {
00508                     const Index previousProfile = m_data.lowerProfile(outer);
00509                     m_data.lowerProfile(outer) = inner - outer;
00510 
00511                     const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
00512                     //shift data stored after this new one
00513                     const Index stop = m_colStartIndex[cols()];
00514                     const Index start = m_colStartIndex[outer + 1];
00515 
00516                     for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
00517                         m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
00518                     }
00519 
00520                     for (Index innerIdx = outer + 1; innerIdx < outerSize() + 1; innerIdx++) {
00521                         m_colStartIndex[innerIdx] += bandIncrement;
00522                     }
00523                     memset(this->_lowerPtr() + m_colStartIndex[outer] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
00524                     return m_data.lower(m_colStartIndex[outer] + m_data.lowerProfile(outer));
00525                 } else {
00526                     return m_data.lower(m_colStartIndex[outer] + (inner - outer));
00527                 }
00528             }
00529         }
00530     }
00531 
00534     inline void finalize() {
00535         if (IsRowMajor) {
00536             if (rows() > cols())
00537                 m_data.resize(cols(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
00538             else
00539                 m_data.resize(rows(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
00540 
00541             //            eigen_assert(rows() == cols() && "memory reorganisatrion only works with suare matrix");
00542             //
00543             //            Scalar* newArray = new Scalar[m_colStartIndex[cols()] + 1 + m_rowStartIndex[rows()] + 1];
00544             //            Index dataIdx = 0;
00545             //            for (Index row = 0; row < rows(); row++) {
00546             //
00547             //                const Index nbLowerElts = m_rowStartIndex[row + 1] - m_rowStartIndex[row];
00548             //                //                std::cout << "nbLowerElts" << nbLowerElts << std::endl;
00549             //                memcpy(newArray + dataIdx, m_data.m_lower + m_rowStartIndex[row], nbLowerElts * sizeof (Scalar));
00550             //                m_rowStartIndex[row] = dataIdx;
00551             //                dataIdx += nbLowerElts;
00552             //
00553             //                const Index nbUpperElts = m_colStartIndex[row + 1] - m_colStartIndex[row];
00554             //                memcpy(newArray + dataIdx, m_data.m_upper + m_colStartIndex[row], nbUpperElts * sizeof (Scalar));
00555             //                m_colStartIndex[row] = dataIdx;
00556             //                dataIdx += nbUpperElts;
00557             //
00558             //
00559             //            }
00560             //            //todo : don't access m_data profile directly : add an accessor from SkylineMatrix
00561             //            m_rowStartIndex[rows()] = m_rowStartIndex[rows()-1] + m_data.lowerProfile(rows()-1);
00562             //            m_colStartIndex[cols()] = m_colStartIndex[cols()-1] + m_data.upperProfile(cols()-1);
00563             //
00564             //            delete[] m_data.m_lower;
00565             //            delete[] m_data.m_upper;
00566             //
00567             //            m_data.m_lower = newArray;
00568             //            m_data.m_upper = newArray;
00569         } else {
00570             if (rows() > cols())
00571                 m_data.resize(cols(), rows(), cols(), m_rowStartIndex[cols()] + 1, m_colStartIndex[cols()] + 1);
00572             else
00573                 m_data.resize(rows(), rows(), cols(), m_rowStartIndex[rows()] + 1, m_colStartIndex[rows()] + 1);
00574         }
00575     }
00576 
00577     inline void squeeze() {
00578         finalize();
00579         m_data.squeeze();
00580     }
00581 
00582     void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar > ()) {
00583         //TODO
00584     }
00585 
00589     void resize(size_t rows, size_t cols) {
00590         const Index diagSize = rows > cols ? cols : rows;
00591         m_innerSize = IsRowMajor ? cols : rows;
00592 
00593         eigen_assert(rows == cols && "Skyline matrix must be square matrix");
00594 
00595         if (diagSize % 2) { // diagSize is odd
00596             const Index k = (diagSize - 1) / 2;
00597 
00598             m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
00599                     2 * k * k + k + 1,
00600                     2 * k * k + k + 1);
00601 
00602         } else // diagSize is even
00603         {
00604             const Index k = diagSize / 2;
00605             m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
00606                     2 * k * k - k + 1,
00607                     2 * k * k - k + 1);
00608         }
00609 
00610         if (m_colStartIndex && m_rowStartIndex) {
00611             delete[] m_colStartIndex;
00612             delete[] m_rowStartIndex;
00613         }
00614         m_colStartIndex = new Index [cols + 1];
00615         m_rowStartIndex = new Index [rows + 1];
00616         m_outerSize = diagSize;
00617 
00618         m_data.reset();
00619         m_data.clear();
00620 
00621         m_outerSize = diagSize;
00622         memset(m_colStartIndex, 0, (cols + 1) * sizeof (Index));
00623         memset(m_rowStartIndex, 0, (rows + 1) * sizeof (Index));
00624     }
00625 
00626     void resizeNonZeros(Index size) {
00627         m_data.resize(size);
00628     }
00629 
00630     inline SkylineMatrix()
00631     : m_outerSize(-1), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
00632         resize(0, 0);
00633     }
00634 
00635     inline SkylineMatrix(size_t rows, size_t cols)
00636     : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
00637         resize(rows, cols);
00638     }
00639 
00640     template<typename OtherDerived>
00641     inline SkylineMatrix(const SkylineMatrixBase<OtherDerived>& other)
00642     : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
00643         *this = other.derived();
00644     }
00645 
00646     inline SkylineMatrix(const SkylineMatrix & other)
00647     : Base(), m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
00648         *this = other.derived();
00649     }
00650 
00651     inline void swap(SkylineMatrix & other) {
00652         //EIGEN_DBG_SKYLINE(std::cout << "SkylineMatrix:: swap\n");
00653         std::swap(m_colStartIndex, other.m_colStartIndex);
00654         std::swap(m_rowStartIndex, other.m_rowStartIndex);
00655         std::swap(m_innerSize, other.m_innerSize);
00656         std::swap(m_outerSize, other.m_outerSize);
00657         m_data.swap(other.m_data);
00658     }
00659 
00660     inline SkylineMatrix & operator=(const SkylineMatrix & other) {
00661         std::cout << "SkylineMatrix& operator=(const SkylineMatrix& other)\n";
00662         if (other.isRValue()) {
00663             swap(other.const_cast_derived());
00664         } else {
00665             resize(other.rows(), other.cols());
00666             memcpy(m_colStartIndex, other.m_colStartIndex, (m_outerSize + 1) * sizeof (Index));
00667             memcpy(m_rowStartIndex, other.m_rowStartIndex, (m_outerSize + 1) * sizeof (Index));
00668             m_data = other.m_data;
00669         }
00670         return *this;
00671     }
00672 
00673     template<typename OtherDerived>
00674             inline SkylineMatrix & operator=(const SkylineMatrixBase<OtherDerived>& other) {
00675         const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
00676         if (needToTranspose) {
00677             //         TODO
00678             //            return *this;
00679         } else {
00680             // there is no special optimization
00681             return SkylineMatrixBase<SkylineMatrix>::operator=(other.derived());
00682         }
00683     }
00684 
00685     friend std::ostream & operator <<(std::ostream & s, const SkylineMatrix & m) {
00686 
00687         EIGEN_DBG_SKYLINE(
00688         std::cout << "upper elements : " << std::endl;
00689         for (Index i = 0; i < m.m_data.upperSize(); i++)
00690             std::cout << m.m_data.upper(i) << "\t";
00691         std::cout << std::endl;
00692         std::cout << "upper profile : " << std::endl;
00693         for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
00694             std::cout << m.m_data.upperProfile(i) << "\t";
00695         std::cout << std::endl;
00696         std::cout << "lower startIdx : " << std::endl;
00697         for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
00698             std::cout << (IsRowMajor ? m.m_colStartIndex[i] : m.m_rowStartIndex[i]) << "\t";
00699         std::cout << std::endl;
00700 
00701 
00702         std::cout << "lower elements : " << std::endl;
00703         for (Index i = 0; i < m.m_data.lowerSize(); i++)
00704             std::cout << m.m_data.lower(i) << "\t";
00705         std::cout << std::endl;
00706         std::cout << "lower profile : " << std::endl;
00707         for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
00708             std::cout << m.m_data.lowerProfile(i) << "\t";
00709         std::cout << std::endl;
00710         std::cout << "lower startIdx : " << std::endl;
00711         for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
00712             std::cout << (IsRowMajor ? m.m_rowStartIndex[i] : m.m_colStartIndex[i]) << "\t";
00713         std::cout << std::endl;
00714         );
00715         for (Index rowIdx = 0; rowIdx < m.rows(); rowIdx++) {
00716             for (Index colIdx = 0; colIdx < m.cols(); colIdx++) {
00717                 s << m.coeff(rowIdx, colIdx) << "\t";
00718             }
00719             s << std::endl;
00720         }
00721         return s;
00722     }
00723 
00725     inline ~SkylineMatrix() {
00726         delete[] m_colStartIndex;
00727         delete[] m_rowStartIndex;
00728     }
00729 
00731     Scalar sum() const;
00732 };
00733 
00734 template<typename Scalar, int _Options>
00735 class SkylineMatrix<Scalar, _Options>::InnerUpperIterator {
00736 public:
00737 
00738     InnerUpperIterator(const SkylineMatrix& mat, Index outer)
00739     : m_matrix(mat), m_outer(outer),
00740     m_id(_Options == RowMajor ? mat.m_colStartIndex[outer] : mat.m_rowStartIndex[outer] + 1),
00741     m_start(m_id),
00742     m_end(_Options == RowMajor ? mat.m_colStartIndex[outer + 1] : mat.m_rowStartIndex[outer + 1] + 1) {
00743     }
00744 
00745     inline InnerUpperIterator & operator++() {
00746         m_id++;
00747         return *this;
00748     }
00749 
00750     inline InnerUpperIterator & operator+=(Index shift) {
00751         m_id += shift;
00752         return *this;
00753     }
00754 
00755     inline Scalar value() const {
00756         return m_matrix.m_data.upper(m_id);
00757     }
00758 
00759     inline Scalar* valuePtr() {
00760         return const_cast<Scalar*> (&(m_matrix.m_data.upper(m_id)));
00761     }
00762 
00763     inline Scalar& valueRef() {
00764         return const_cast<Scalar&> (m_matrix.m_data.upper(m_id));
00765     }
00766 
00767     inline Index index() const {
00768         return IsRowMajor ? m_outer - m_matrix.m_data.upperProfile(m_outer) + (m_id - m_start) :
00769                 m_outer + (m_id - m_start) + 1;
00770     }
00771 
00772     inline Index row() const {
00773         return IsRowMajor ? index() : m_outer;
00774     }
00775 
00776     inline Index col() const {
00777         return IsRowMajor ? m_outer : index();
00778     }
00779 
00780     inline size_t size() const {
00781         return m_matrix.m_data.upperProfile(m_outer);
00782     }
00783 
00784     inline operator bool() const {
00785         return (m_id < m_end) && (m_id >= m_start);
00786     }
00787 
00788 protected:
00789     const SkylineMatrix& m_matrix;
00790     const Index m_outer;
00791     Index m_id;
00792     const Index m_start;
00793     const Index m_end;
00794 };
00795 
00796 template<typename Scalar, int _Options>
00797 class SkylineMatrix<Scalar, _Options>::InnerLowerIterator {
00798 public:
00799 
00800     InnerLowerIterator(const SkylineMatrix& mat, Index outer)
00801     : m_matrix(mat),
00802     m_outer(outer),
00803     m_id(_Options == RowMajor ? mat.m_rowStartIndex[outer] : mat.m_colStartIndex[outer] + 1),
00804     m_start(m_id),
00805     m_end(_Options == RowMajor ? mat.m_rowStartIndex[outer + 1] : mat.m_colStartIndex[outer + 1] + 1) {
00806     }
00807 
00808     inline InnerLowerIterator & operator++() {
00809         m_id++;
00810         return *this;
00811     }
00812 
00813     inline InnerLowerIterator & operator+=(Index shift) {
00814         m_id += shift;
00815         return *this;
00816     }
00817 
00818     inline Scalar value() const {
00819         return m_matrix.m_data.lower(m_id);
00820     }
00821 
00822     inline Scalar* valuePtr() {
00823         return const_cast<Scalar*> (&(m_matrix.m_data.lower(m_id)));
00824     }
00825 
00826     inline Scalar& valueRef() {
00827         return const_cast<Scalar&> (m_matrix.m_data.lower(m_id));
00828     }
00829 
00830     inline Index index() const {
00831         return IsRowMajor ? m_outer - m_matrix.m_data.lowerProfile(m_outer) + (m_id - m_start) :
00832                 m_outer + (m_id - m_start) + 1;
00833         ;
00834     }
00835 
00836     inline Index row() const {
00837         return IsRowMajor ? m_outer : index();
00838     }
00839 
00840     inline Index col() const {
00841         return IsRowMajor ? index() : m_outer;
00842     }
00843 
00844     inline size_t size() const {
00845         return m_matrix.m_data.lowerProfile(m_outer);
00846     }
00847 
00848     inline operator bool() const {
00849         return (m_id < m_end) && (m_id >= m_start);
00850     }
00851 
00852 protected:
00853     const SkylineMatrix& m_matrix;
00854     const Index m_outer;
00855     Index m_id;
00856     const Index m_start;
00857     const Index m_end;
00858 };
00859 
00860 } // end namespace Eigen
00861 
00862 #endif // EIGEN_SkylineMatrix_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:35:42