SelfadjointMatrixVector.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00011 #define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00012 
00013 namespace Eigen { 
00014 
00015 namespace internal {
00016 
00017 /* Optimized selfadjoint matrix * vector product:
00018  * This algorithm processes 2 columns at onces that allows to both reduce
00019  * the number of load/stores of the result by a factor 2 and to reduce
00020  * the instruction dependency.
00021  */
00022 
00023 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
00024 struct selfadjoint_matrix_vector_product;
00025 
00026 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
00027 struct selfadjoint_matrix_vector_product
00028 
00029 {
00030 static EIGEN_DONT_INLINE void run(
00031   Index size,
00032   const Scalar*  lhs, Index lhsStride,
00033   const Scalar* _rhs, Index rhsIncr,
00034   Scalar* res,
00035   Scalar alpha);
00036 };
00037 
00038 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
00039 EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,Version>::run(
00040   Index size,
00041   const Scalar*  lhs, Index lhsStride,
00042   const Scalar* _rhs, Index rhsIncr,
00043   Scalar* res,
00044   Scalar alpha)
00045 {
00046   typedef typename packet_traits<Scalar>::type Packet;
00047   const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
00048 
00049   enum {
00050     IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
00051     IsLower = UpLo == Lower ? 1 : 0,
00052     FirstTriangular = IsRowMajor == IsLower
00053   };
00054 
00055   conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> cj0;
00056   conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
00057   conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;
00058 
00059   conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> pcj0;
00060   conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;
00061 
00062   Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;
00063 
00064   // FIXME this copy is now handled outside product_selfadjoint_vector, so it could probably be removed.
00065   // if the rhs is not sequentially stored in memory we copy it to a temporary buffer,
00066   // this is because we need to extract packets
00067   ei_declare_aligned_stack_constructed_variable(Scalar,rhs,size,rhsIncr==1 ? const_cast<Scalar*>(_rhs) : 0);  
00068   if (rhsIncr!=1)
00069   {
00070     const Scalar* it = _rhs;
00071     for (Index i=0; i<size; ++i, it+=rhsIncr)
00072       rhs[i] = *it;
00073   }
00074 
00075   Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
00076   if (FirstTriangular)
00077     bound = size - bound;
00078 
00079   for (Index j=FirstTriangular ? bound : 0;
00080        j<(FirstTriangular ? size : bound);j+=2)
00081   {
00082     const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00083     const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
00084 
00085     Scalar t0 = cjAlpha * rhs[j];
00086     Packet ptmp0 = pset1<Packet>(t0);
00087     Scalar t1 = cjAlpha * rhs[j+1];
00088     Packet ptmp1 = pset1<Packet>(t1);
00089 
00090     Scalar t2(0);
00091     Packet ptmp2 = pset1<Packet>(t2);
00092     Scalar t3(0);
00093     Packet ptmp3 = pset1<Packet>(t3);
00094 
00095     size_t starti = FirstTriangular ? 0 : j+2;
00096     size_t endi   = FirstTriangular ? j : size;
00097     size_t alignedStart = (starti) + internal::first_aligned(&res[starti], endi-starti);
00098     size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
00099 
00100     // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
00101     res[j]   += cjd.pmul(numext::real(A0[j]), t0);
00102     res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
00103     if(FirstTriangular)
00104     {
00105       res[j]   += cj0.pmul(A1[j],   t1);
00106       t3       += cj1.pmul(A1[j],   rhs[j]);
00107     }
00108     else
00109     {
00110       res[j+1] += cj0.pmul(A0[j+1],t0);
00111       t2 += cj1.pmul(A0[j+1], rhs[j+1]);
00112     }
00113 
00114     for (size_t i=starti; i<alignedStart; ++i)
00115     {
00116       res[i] += t0 * A0[i] + t1 * A1[i];
00117       t2 += numext::conj(A0[i]) * rhs[i];
00118       t3 += numext::conj(A1[i]) * rhs[i];
00119     }
00120     // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
00121     // gcc 4.2 does this optimization automatically.
00122     const Scalar* EIGEN_RESTRICT a0It  = A0  + alignedStart;
00123     const Scalar* EIGEN_RESTRICT a1It  = A1  + alignedStart;
00124     const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
00125           Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
00126     for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
00127     {
00128       Packet A0i = ploadu<Packet>(a0It);  a0It  += PacketSize;
00129       Packet A1i = ploadu<Packet>(a1It);  a1It  += PacketSize;
00130       Packet Bi  = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
00131       Packet Xi  = pload <Packet>(resIt);
00132 
00133       Xi    = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
00134       ptmp2 = pcj1.pmadd(A0i,  Bi, ptmp2);
00135       ptmp3 = pcj1.pmadd(A1i,  Bi, ptmp3);
00136       pstore(resIt,Xi); resIt += PacketSize;
00137     }
00138     for (size_t i=alignedEnd; i<endi; i++)
00139     {
00140       res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
00141       t2 += cj1.pmul(A0[i], rhs[i]);
00142       t3 += cj1.pmul(A1[i], rhs[i]);
00143     }
00144 
00145     res[j]   += alpha * (t2 + predux(ptmp2));
00146     res[j+1] += alpha * (t3 + predux(ptmp3));
00147   }
00148   for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
00149   {
00150     const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00151 
00152     Scalar t1 = cjAlpha * rhs[j];
00153     Scalar t2(0);
00154     // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
00155     res[j] += cjd.pmul(numext::real(A0[j]), t1);
00156     for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
00157     {
00158       res[i] += cj0.pmul(A0[i], t1);
00159       t2 += cj1.pmul(A0[i], rhs[i]);
00160     }
00161     res[j] += alpha * t2;
00162   }
00163 }
00164 
00165 } // end namespace internal 
00166 
00167 /***************************************************************************
00168 * Wrapper to product_selfadjoint_vector
00169 ***************************************************************************/
00170 
00171 namespace internal {
00172 template<typename Lhs, int LhsMode, typename Rhs>
00173 struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
00174   : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
00175 {};
00176 }
00177 
00178 template<typename Lhs, int LhsMode, typename Rhs>
00179 struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
00180   : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
00181 {
00182   EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00183 
00184   enum {
00185     LhsUpLo = LhsMode&(Upper|Lower)
00186   };
00187 
00188   SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00189 
00190   template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
00191   {
00192     typedef typename Dest::Scalar ResScalar;
00193     typedef typename Base::RhsScalar RhsScalar;
00194     typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
00195     
00196     eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());
00197 
00198     typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
00199     typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
00200 
00201     Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
00202                                * RhsBlasTraits::extractScalarFactor(m_rhs);
00203 
00204     enum {
00205       EvalToDest = (Dest::InnerStrideAtCompileTime==1),
00206       UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
00207     };
00208     
00209     internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
00210     internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;
00211 
00212     ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
00213                                                   EvalToDest ? dest.data() : static_dest.data());
00214                                                   
00215     ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
00216         UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
00217     
00218     if(!EvalToDest)
00219     {
00220       #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00221       int size = dest.size();
00222       EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00223       #endif
00224       MappedDest(actualDestPtr, dest.size()) = dest;
00225     }
00226       
00227     if(!UseRhs)
00228     {
00229       #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00230       int size = rhs.size();
00231       EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00232       #endif
00233       Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
00234     }
00235       
00236       
00237     internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
00238       (
00239         lhs.rows(),                             // size
00240         &lhs.coeffRef(0,0),  lhs.outerStride(), // lhs info
00241         actualRhsPtr, 1,                        // rhs info
00242         actualDestPtr,                          // result info
00243         actualAlpha                             // scale factor
00244       );
00245     
00246     if(!EvalToDest)
00247       dest = MappedDest(actualDestPtr, dest.size());
00248   }
00249 };
00250 
00251 namespace internal {
00252 template<typename Lhs, typename Rhs, int RhsMode>
00253 struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
00254   : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
00255 {};
00256 }
00257 
00258 template<typename Lhs, typename Rhs, int RhsMode>
00259 struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
00260   : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
00261 {
00262   EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00263 
00264   enum {
00265     RhsUpLo = RhsMode&(Upper|Lower)
00266   };
00267 
00268   SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00269 
00270   template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
00271   {
00272     // let's simply transpose the product
00273     Transpose<Dest> destT(dest);
00274     SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
00275                              Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
00276   }
00277 };
00278 
00279 } // end namespace Eigen
00280 
00281 #endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:35:17