SelfadjointMatrixMatrix.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H
00011 #define EIGEN_SELFADJOINT_MATRIX_MATRIX_H
00012 
00013 namespace Eigen { 
00014 
00015 namespace internal {
00016 
00017 // pack a selfadjoint block diagonal for use with the gebp_kernel
00018 template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder>
00019 struct symm_pack_lhs
00020 {
00021   template<int BlockRows> inline
00022   void pack(Scalar* blockA, const const_blas_data_mapper<Scalar,Index,StorageOrder>& lhs, Index cols, Index i, Index& count)
00023   {
00024     // normal copy
00025     for(Index k=0; k<i; k++)
00026       for(Index w=0; w<BlockRows; w++)
00027         blockA[count++] = lhs(i+w,k);           // normal
00028     // symmetric copy
00029     Index h = 0;
00030     for(Index k=i; k<i+BlockRows; k++)
00031     {
00032       for(Index w=0; w<h; w++)
00033         blockA[count++] = numext::conj(lhs(k, i+w)); // transposed
00034 
00035       blockA[count++] = numext::real(lhs(k,k));   // real (diagonal)
00036 
00037       for(Index w=h+1; w<BlockRows; w++)
00038         blockA[count++] = lhs(i+w, k);          // normal
00039       ++h;
00040     }
00041     // transposed copy
00042     for(Index k=i+BlockRows; k<cols; k++)
00043       for(Index w=0; w<BlockRows; w++)
00044         blockA[count++] = numext::conj(lhs(k, i+w)); // transposed
00045   }
00046   void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows)
00047   {
00048     const_blas_data_mapper<Scalar,Index,StorageOrder> lhs(_lhs,lhsStride);
00049     Index count = 0;
00050     Index peeled_mc = (rows/Pack1)*Pack1;
00051     for(Index i=0; i<peeled_mc; i+=Pack1)
00052     {
00053       pack<Pack1>(blockA, lhs, cols, i, count);
00054     }
00055 
00056     if(rows-peeled_mc>=Pack2)
00057     {
00058       pack<Pack2>(blockA, lhs, cols, peeled_mc, count);
00059       peeled_mc += Pack2;
00060     }
00061 
00062     // do the same with mr==1
00063     for(Index i=peeled_mc; i<rows; i++)
00064     {
00065       for(Index k=0; k<i; k++)
00066         blockA[count++] = lhs(i, k);              // normal
00067 
00068       blockA[count++] = numext::real(lhs(i, i));       // real (diagonal)
00069 
00070       for(Index k=i+1; k<cols; k++)
00071         blockA[count++] = numext::conj(lhs(k, i));     // transposed
00072     }
00073   }
00074 };
00075 
00076 template<typename Scalar, typename Index, int nr, int StorageOrder>
00077 struct symm_pack_rhs
00078 {
00079   enum { PacketSize = packet_traits<Scalar>::size };
00080   void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
00081   {
00082     Index end_k = k2 + rows;
00083     Index count = 0;
00084     const_blas_data_mapper<Scalar,Index,StorageOrder> rhs(_rhs,rhsStride);
00085     Index packet_cols = (cols/nr)*nr;
00086 
00087     // first part: normal case
00088     for(Index j2=0; j2<k2; j2+=nr)
00089     {
00090       for(Index k=k2; k<end_k; k++)
00091       {
00092         blockB[count+0] = rhs(k,j2+0);
00093         blockB[count+1] = rhs(k,j2+1);
00094         if (nr==4)
00095         {
00096           blockB[count+2] = rhs(k,j2+2);
00097           blockB[count+3] = rhs(k,j2+3);
00098         }
00099         count += nr;
00100       }
00101     }
00102 
00103     // second part: diagonal block
00104     for(Index j2=k2; j2<(std::min)(k2+rows,packet_cols); j2+=nr)
00105     {
00106       // again we can split vertically in three different parts (transpose, symmetric, normal)
00107       // transpose
00108       for(Index k=k2; k<j2; k++)
00109       {
00110         blockB[count+0] = numext::conj(rhs(j2+0,k));
00111         blockB[count+1] = numext::conj(rhs(j2+1,k));
00112         if (nr==4)
00113         {
00114           blockB[count+2] = numext::conj(rhs(j2+2,k));
00115           blockB[count+3] = numext::conj(rhs(j2+3,k));
00116         }
00117         count += nr;
00118       }
00119       // symmetric
00120       Index h = 0;
00121       for(Index k=j2; k<j2+nr; k++)
00122       {
00123         // normal
00124         for (Index w=0 ; w<h; ++w)
00125           blockB[count+w] = rhs(k,j2+w);
00126 
00127         blockB[count+h] = numext::real(rhs(k,k));
00128 
00129         // transpose
00130         for (Index w=h+1 ; w<nr; ++w)
00131           blockB[count+w] = numext::conj(rhs(j2+w,k));
00132         count += nr;
00133         ++h;
00134       }
00135       // normal
00136       for(Index k=j2+nr; k<end_k; k++)
00137       {
00138         blockB[count+0] = rhs(k,j2+0);
00139         blockB[count+1] = rhs(k,j2+1);
00140         if (nr==4)
00141         {
00142           blockB[count+2] = rhs(k,j2+2);
00143           blockB[count+3] = rhs(k,j2+3);
00144         }
00145         count += nr;
00146       }
00147     }
00148 
00149     // third part: transposed
00150     for(Index j2=k2+rows; j2<packet_cols; j2+=nr)
00151     {
00152       for(Index k=k2; k<end_k; k++)
00153       {
00154         blockB[count+0] = numext::conj(rhs(j2+0,k));
00155         blockB[count+1] = numext::conj(rhs(j2+1,k));
00156         if (nr==4)
00157         {
00158           blockB[count+2] = numext::conj(rhs(j2+2,k));
00159           blockB[count+3] = numext::conj(rhs(j2+3,k));
00160         }
00161         count += nr;
00162       }
00163     }
00164 
00165     // copy the remaining columns one at a time (=> the same with nr==1)
00166     for(Index j2=packet_cols; j2<cols; ++j2)
00167     {
00168       // transpose
00169       Index half = (std::min)(end_k,j2);
00170       for(Index k=k2; k<half; k++)
00171       {
00172         blockB[count] = numext::conj(rhs(j2,k));
00173         count += 1;
00174       }
00175 
00176       if(half==j2 && half<k2+rows)
00177       {
00178         blockB[count] = numext::real(rhs(j2,j2));
00179         count += 1;
00180       }
00181       else
00182         half--;
00183 
00184       // normal
00185       for(Index k=half+1; k<k2+rows; k++)
00186       {
00187         blockB[count] = rhs(k,j2);
00188         count += 1;
00189       }
00190     }
00191   }
00192 };
00193 
00194 /* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of
00195  * the general matrix matrix product.
00196  */
00197 template <typename Scalar, typename Index,
00198           int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
00199           int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs,
00200           int ResStorageOrder>
00201 struct product_selfadjoint_matrix;
00202 
00203 template <typename Scalar, typename Index,
00204           int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
00205           int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs>
00206 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor>
00207 {
00208 
00209   static EIGEN_STRONG_INLINE void run(
00210     Index rows, Index cols,
00211     const Scalar* lhs, Index lhsStride,
00212     const Scalar* rhs, Index rhsStride,
00213     Scalar* res,       Index resStride,
00214     const Scalar& alpha)
00215   {
00216     product_selfadjoint_matrix<Scalar, Index,
00217       EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
00218       RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs),
00219       EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
00220       LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs),
00221       ColMajor>
00222       ::run(cols, rows,  rhs, rhsStride,  lhs, lhsStride,  res, resStride,  alpha);
00223   }
00224 };
00225 
00226 template <typename Scalar, typename Index,
00227           int LhsStorageOrder, bool ConjugateLhs,
00228           int RhsStorageOrder, bool ConjugateRhs>
00229 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>
00230 {
00231 
00232   static EIGEN_DONT_INLINE void run(
00233     Index rows, Index cols,
00234     const Scalar* _lhs, Index lhsStride,
00235     const Scalar* _rhs, Index rhsStride,
00236     Scalar* res,        Index resStride,
00237     const Scalar& alpha);
00238 };
00239 
00240 template <typename Scalar, typename Index,
00241           int LhsStorageOrder, bool ConjugateLhs,
00242           int RhsStorageOrder, bool ConjugateRhs>
00243 EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>::run(
00244     Index rows, Index cols,
00245     const Scalar* _lhs, Index lhsStride,
00246     const Scalar* _rhs, Index rhsStride,
00247     Scalar* res,        Index resStride,
00248     const Scalar& alpha)
00249   {
00250     Index size = rows;
00251 
00252     const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
00253     const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
00254 
00255     typedef gebp_traits<Scalar,Scalar> Traits;
00256 
00257     Index kc = size;  // cache block size along the K direction
00258     Index mc = rows;  // cache block size along the M direction
00259     Index nc = cols;  // cache block size along the N direction
00260     computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
00261     // kc must smaller than mc
00262     kc = (std::min)(kc,mc);
00263 
00264     std::size_t sizeW = kc*Traits::WorkSpaceFactor;
00265     std::size_t sizeB = sizeW + kc*cols;
00266     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
00267     ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
00268     Scalar* blockB = allocatedBlockB + sizeW;
00269 
00270     gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
00271     symm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
00272     gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
00273     gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder==RowMajor?ColMajor:RowMajor, true> pack_lhs_transposed;
00274 
00275     for(Index k2=0; k2<size; k2+=kc)
00276     {
00277       const Index actual_kc = (std::min)(k2+kc,size)-k2;
00278 
00279       // we have selected one row panel of rhs and one column panel of lhs
00280       // pack rhs's panel into a sequential chunk of memory
00281       // and expand each coeff to a constant packet for further reuse
00282       pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
00283 
00284       // the select lhs's panel has to be split in three different parts:
00285       //  1 - the transposed panel above the diagonal block => transposed packed copy
00286       //  2 - the diagonal block => special packed copy
00287       //  3 - the panel below the diagonal block => generic packed copy
00288       for(Index i2=0; i2<k2; i2+=mc)
00289       {
00290         const Index actual_mc = (std::min)(i2+mc,k2)-i2;
00291         // transposed packed copy
00292         pack_lhs_transposed(blockA, &lhs(k2, i2), lhsStride, actual_kc, actual_mc);
00293 
00294         gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
00295       }
00296       // the block diagonal
00297       {
00298         const Index actual_mc = (std::min)(k2+kc,size)-k2;
00299         // symmetric packed copy
00300         pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc);
00301 
00302         gebp_kernel(res+k2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
00303       }
00304 
00305       for(Index i2=k2+kc; i2<size; i2+=mc)
00306       {
00307         const Index actual_mc = (std::min)(i2+mc,size)-i2;
00308         gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder,false>()
00309           (blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
00310 
00311         gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
00312       }
00313     }
00314   }
00315 
00316 // matrix * selfadjoint product
00317 template <typename Scalar, typename Index,
00318           int LhsStorageOrder, bool ConjugateLhs,
00319           int RhsStorageOrder, bool ConjugateRhs>
00320 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>
00321 {
00322 
00323   static EIGEN_DONT_INLINE void run(
00324     Index rows, Index cols,
00325     const Scalar* _lhs, Index lhsStride,
00326     const Scalar* _rhs, Index rhsStride,
00327     Scalar* res,        Index resStride,
00328     const Scalar& alpha);
00329 };
00330 
00331 template <typename Scalar, typename Index,
00332           int LhsStorageOrder, bool ConjugateLhs,
00333           int RhsStorageOrder, bool ConjugateRhs>
00334 EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>::run(
00335     Index rows, Index cols,
00336     const Scalar* _lhs, Index lhsStride,
00337     const Scalar* _rhs, Index rhsStride,
00338     Scalar* res,        Index resStride,
00339     const Scalar& alpha)
00340   {
00341     Index size = cols;
00342 
00343     const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
00344 
00345     typedef gebp_traits<Scalar,Scalar> Traits;
00346 
00347     Index kc = size; // cache block size along the K direction
00348     Index mc = rows;  // cache block size along the M direction
00349     Index nc = cols;  // cache block size along the N direction
00350     computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
00351     std::size_t sizeW = kc*Traits::WorkSpaceFactor;
00352     std::size_t sizeB = sizeW + kc*cols;
00353     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
00354     ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
00355     Scalar* blockB = allocatedBlockB + sizeW;
00356 
00357     gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
00358     gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
00359     symm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
00360 
00361     for(Index k2=0; k2<size; k2+=kc)
00362     {
00363       const Index actual_kc = (std::min)(k2+kc,size)-k2;
00364 
00365       pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2);
00366 
00367       // => GEPP
00368       for(Index i2=0; i2<rows; i2+=mc)
00369       {
00370         const Index actual_mc = (std::min)(i2+mc,rows)-i2;
00371         pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
00372 
00373         gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
00374       }
00375     }
00376   }
00377 
00378 } // end namespace internal
00379 
00380 /***************************************************************************
00381 * Wrapper to product_selfadjoint_matrix
00382 ***************************************************************************/
00383 
00384 namespace internal {
00385 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
00386 struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> >
00387   : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs> >
00388 {};
00389 }
00390 
00391 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
00392 struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>
00393   : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs >
00394 {
00395   EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00396 
00397   SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00398 
00399   enum {
00400     LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
00401     LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
00402     RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
00403     RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
00404   };
00405 
00406   template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
00407   {
00408     eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
00409 
00410     typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
00411     typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
00412 
00413     Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
00414                                * RhsBlasTraits::extractScalarFactor(m_rhs);
00415 
00416     internal::product_selfadjoint_matrix<Scalar, Index,
00417       EIGEN_LOGICAL_XOR(LhsIsUpper,
00418                         internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
00419       NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
00420       EIGEN_LOGICAL_XOR(RhsIsUpper,
00421                         internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
00422       NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
00423       internal::traits<Dest>::Flags&RowMajorBit  ? RowMajor : ColMajor>
00424       ::run(
00425         lhs.rows(), rhs.cols(),                 // sizes
00426         &lhs.coeffRef(0,0),    lhs.outerStride(),  // lhs info
00427         &rhs.coeffRef(0,0),    rhs.outerStride(),  // rhs info
00428         &dst.coeffRef(0,0), dst.outerStride(),  // result info
00429         actualAlpha                             // alpha
00430       );
00431   }
00432 };
00433 
00434 } // end namespace Eigen
00435 
00436 #endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:35:17