Ordering.h
Go to the documentation of this file.
00001  
00002 // This file is part of Eigen, a lightweight C++ template library
00003 // for linear algebra.
00004 //
00005 // Copyright (C) 2012  Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_ORDERING_H
00012 #define EIGEN_ORDERING_H
00013 
00014 namespace Eigen {
00015   
00016 #include "Eigen_Colamd.h"
00017 
00018 namespace internal {
00019     
00025 template<typename MatrixType> 
00026 void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat)
00027 {
00028   MatrixType C;
00029   C = mat.transpose(); // NOTE: Could be  costly
00030   for (int i = 0; i < C.rows(); i++) 
00031   {
00032       for (typename MatrixType::InnerIterator it(C, i); it; ++it)
00033         it.valueRef() = 0.0;
00034   }
00035   symmat = C + mat; 
00036 }
00037     
00038 }
00039 
00040 #ifndef EIGEN_MPL2_ONLY
00041 
00050 template <typename Index>
00051 class AMDOrdering
00052 {
00053   public:
00054     typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
00055     
00059     template <typename MatrixType>
00060     void operator()(const MatrixType& mat, PermutationType& perm)
00061     {
00062       // Compute the symmetric pattern
00063       SparseMatrix<typename MatrixType::Scalar, ColMajor, Index> symm;
00064       internal::ordering_helper_at_plus_a(mat,symm); 
00065     
00066       // Call the AMD routine 
00067       //m_mat.prune(keep_diag());
00068       internal::minimum_degree_ordering(symm, perm);
00069     }
00070     
00072     template <typename SrcType, unsigned int SrcUpLo> 
00073     void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
00074     { 
00075       SparseMatrix<typename SrcType::Scalar, ColMajor, Index> C; C = mat;
00076       
00077       // Call the AMD routine 
00078       // m_mat.prune(keep_diag()); //Remove the diagonal elements 
00079       internal::minimum_degree_ordering(C, perm);
00080     }
00081 };
00082 
00083 #endif // EIGEN_MPL2_ONLY
00084 
00093 template <typename Index>
00094 class NaturalOrdering
00095 {
00096   public:
00097     typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
00098     
00100     template <typename MatrixType>
00101     void operator()(const MatrixType& /*mat*/, PermutationType& perm)
00102     {
00103       perm.resize(0); 
00104     }
00105     
00106 };
00107 
00114 template<typename Index>
00115 class COLAMDOrdering
00116 {
00117   public:
00118     typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; 
00119     typedef Matrix<Index, Dynamic, 1> IndexVector;
00120     
00124     template <typename MatrixType>
00125     void operator() (const MatrixType& mat, PermutationType& perm)
00126     {
00127       eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
00128       
00129       Index m = mat.rows();
00130       Index n = mat.cols();
00131       Index nnz = mat.nonZeros();
00132       // Get the recommended value of Alen to be used by colamd
00133       Index Alen = internal::colamd_recommended(nnz, m, n); 
00134       // Set the default parameters
00135       double knobs [COLAMD_KNOBS]; 
00136       Index stats [COLAMD_STATS];
00137       internal::colamd_set_defaults(knobs);
00138       
00139       IndexVector p(n+1), A(Alen); 
00140       for(Index i=0; i <= n; i++)   p(i) = mat.outerIndexPtr()[i];
00141       for(Index i=0; i < nnz; i++)  A(i) = mat.innerIndexPtr()[i];
00142       // Call Colamd routine to compute the ordering 
00143       Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats); 
00144       EIGEN_UNUSED_VARIABLE(info);
00145       eigen_assert( info && "COLAMD failed " );
00146       
00147       perm.resize(n);
00148       for (Index i = 0; i < n; i++) perm.indices()(p(i)) = i;
00149     }
00150 };
00151 
00152 } // end namespace Eigen
00153 
00154 #endif


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:33:33