IncompleteLUT.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_INCOMPLETE_LUT_H
00011 #define EIGEN_INCOMPLETE_LUT_H
00012 
00013 
00014 namespace Eigen { 
00015 
00016 namespace internal {
00017     
00027 template <typename VectorV, typename VectorI, typename Index>
00028 Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
00029 {
00030   typedef typename VectorV::RealScalar RealScalar;
00031   using std::swap;
00032   using std::abs;
00033   Index mid;
00034   Index n = row.size(); /* length of the vector */
00035   Index first, last ;
00036   
00037   ncut--; /* to fit the zero-based indices */
00038   first = 0; 
00039   last = n-1; 
00040   if (ncut < first || ncut > last ) return 0;
00041   
00042   do {
00043     mid = first; 
00044     RealScalar abskey = abs(row(mid)); 
00045     for (Index j = first + 1; j <= last; j++) {
00046       if ( abs(row(j)) > abskey) {
00047         ++mid;
00048         swap(row(mid), row(j));
00049         swap(ind(mid), ind(j));
00050       }
00051     }
00052     /* Interchange for the pivot element */
00053     swap(row(mid), row(first));
00054     swap(ind(mid), ind(first));
00055     
00056     if (mid > ncut) last = mid - 1;
00057     else if (mid < ncut ) first = mid + 1; 
00058   } while (mid != ncut );
00059   
00060   return 0; /* mid is equal to ncut */ 
00061 }
00062 
00063 }// end namespace internal
00064 
00095 template <typename _Scalar>
00096 class IncompleteLUT : internal::noncopyable
00097 {
00098     typedef _Scalar Scalar;
00099     typedef typename NumTraits<Scalar>::Real RealScalar;
00100     typedef Matrix<Scalar,Dynamic,1> Vector;
00101     typedef SparseMatrix<Scalar,RowMajor> FactorType;
00102     typedef SparseMatrix<Scalar,ColMajor> PermutType;
00103     typedef typename FactorType::Index Index;
00104 
00105   public:
00106     typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
00107     
00108     IncompleteLUT()
00109       : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
00110         m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
00111     {}
00112     
00113     template<typename MatrixType>
00114     IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
00115       : m_droptol(droptol),m_fillfactor(fillfactor),
00116         m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
00117     {
00118       eigen_assert(fillfactor != 0);
00119       compute(mat); 
00120     }
00121     
00122     Index rows() const { return m_lu.rows(); }
00123     
00124     Index cols() const { return m_lu.cols(); }
00125 
00131     ComputationInfo info() const
00132     {
00133       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
00134       return m_info;
00135     }
00136     
00137     template<typename MatrixType>
00138     void analyzePattern(const MatrixType& amat);
00139     
00140     template<typename MatrixType>
00141     void factorize(const MatrixType& amat);
00142     
00148     template<typename MatrixType>
00149     IncompleteLUT<Scalar>& compute(const MatrixType& amat)
00150     {
00151       analyzePattern(amat); 
00152       factorize(amat);
00153       return *this;
00154     }
00155 
00156     void setDroptol(const RealScalar& droptol); 
00157     void setFillfactor(int fillfactor); 
00158     
00159     template<typename Rhs, typename Dest>
00160     void _solve(const Rhs& b, Dest& x) const
00161     {
00162       x = m_Pinv * b;  
00163       x = m_lu.template triangularView<UnitLower>().solve(x);
00164       x = m_lu.template triangularView<Upper>().solve(x);
00165       x = m_P * x; 
00166     }
00167 
00168     template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
00169      solve(const MatrixBase<Rhs>& b) const
00170     {
00171       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
00172       eigen_assert(cols()==b.rows()
00173                 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
00174       return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
00175     }
00176 
00177 protected:
00178 
00180     struct keep_diag {
00181       inline bool operator() (const Index& row, const Index& col, const Scalar&) const
00182       {
00183         return row!=col;
00184       }
00185     };
00186 
00187 protected:
00188 
00189     FactorType m_lu;
00190     RealScalar m_droptol;
00191     int m_fillfactor;
00192     bool m_analysisIsOk;
00193     bool m_factorizationIsOk;
00194     bool m_isInitialized;
00195     ComputationInfo m_info;
00196     PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // Fill-reducing permutation
00197     PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // Inverse permutation
00198 };
00199 
00204 template<typename Scalar>
00205 void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
00206 {
00207   this->m_droptol = droptol;   
00208 }
00209 
00214 template<typename Scalar>
00215 void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
00216 {
00217   this->m_fillfactor = fillfactor;   
00218 }
00219 
00220 template <typename Scalar>
00221 template<typename _MatrixType>
00222 void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
00223 {
00224   // Compute the Fill-reducing permutation
00225   SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
00226   SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
00227   // Symmetrize the pattern
00228   // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
00229   //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
00230   SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
00231   AtA.prune(keep_diag());
00232   internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);  // Then compute the AMD ordering...
00233 
00234   m_Pinv  = m_P.inverse(); // ... and the inverse permutation
00235 
00236   m_analysisIsOk = true;
00237   m_factorizationIsOk = false;
00238   m_isInitialized = false;
00239 }
00240 
00241 template <typename Scalar>
00242 template<typename _MatrixType>
00243 void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
00244 {
00245   using std::sqrt;
00246   using std::swap;
00247   using std::abs;
00248 
00249   eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
00250   Index n = amat.cols();  // Size of the matrix
00251   m_lu.resize(n,n);
00252   // Declare Working vectors and variables
00253   Vector u(n) ;     // real values of the row -- maximum size is n --
00254   VectorXi ju(n);   // column position of the values in u -- maximum size  is n
00255   VectorXi jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
00256 
00257   // Apply the fill-reducing permutation
00258   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
00259   SparseMatrix<Scalar,RowMajor, Index> mat;
00260   mat = amat.twistedBy(m_Pinv);
00261 
00262   // Initialization
00263   jr.fill(-1);
00264   ju.fill(0);
00265   u.fill(0);
00266 
00267   // number of largest elements to keep in each row:
00268   Index fill_in =   static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
00269   if (fill_in > n) fill_in = n;
00270 
00271   // number of largest nonzero elements to keep in the L and the U part of the current row:
00272   Index nnzL = fill_in/2;
00273   Index nnzU = nnzL;
00274   m_lu.reserve(n * (nnzL + nnzU + 1));
00275 
00276   // global loop over the rows of the sparse matrix
00277   for (Index ii = 0; ii < n; ii++)
00278   {
00279     // 1 - copy the lower and the upper part of the row i of mat in the working vector u
00280 
00281     Index sizeu = 1; // number of nonzero elements in the upper part of the current row
00282     Index sizel = 0; // number of nonzero elements in the lower part of the current row
00283     ju(ii)    = ii;
00284     u(ii)     = 0;
00285     jr(ii)    = ii;
00286     RealScalar rownorm = 0;
00287 
00288     typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
00289     for (; j_it; ++j_it)
00290     {
00291       Index k = j_it.index();
00292       if (k < ii)
00293       {
00294         // copy the lower part
00295         ju(sizel) = k;
00296         u(sizel) = j_it.value();
00297         jr(k) = sizel;
00298         ++sizel;
00299       }
00300       else if (k == ii)
00301       {
00302         u(ii) = j_it.value();
00303       }
00304       else
00305       {
00306         // copy the upper part
00307         Index jpos = ii + sizeu;
00308         ju(jpos) = k;
00309         u(jpos) = j_it.value();
00310         jr(k) = jpos;
00311         ++sizeu;
00312       }
00313       rownorm += numext::abs2(j_it.value());
00314     }
00315 
00316     // 2 - detect possible zero row
00317     if(rownorm==0)
00318     {
00319       m_info = NumericalIssue;
00320       return;
00321     }
00322     // Take the 2-norm of the current row as a relative tolerance
00323     rownorm = sqrt(rownorm);
00324 
00325     // 3 - eliminate the previous nonzero rows
00326     Index jj = 0;
00327     Index len = 0;
00328     while (jj < sizel)
00329     {
00330       // In order to eliminate in the correct order,
00331       // we must select first the smallest column index among  ju(jj:sizel)
00332       Index k;
00333       Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
00334       k += jj;
00335       if (minrow != ju(jj))
00336       {
00337         // swap the two locations
00338         Index j = ju(jj);
00339         swap(ju(jj), ju(k));
00340         jr(minrow) = jj;   jr(j) = k;
00341         swap(u(jj), u(k));
00342       }
00343       // Reset this location
00344       jr(minrow) = -1;
00345 
00346       // Start elimination
00347       typename FactorType::InnerIterator ki_it(m_lu, minrow);
00348       while (ki_it && ki_it.index() < minrow) ++ki_it;
00349       eigen_internal_assert(ki_it && ki_it.col()==minrow);
00350       Scalar fact = u(jj) / ki_it.value();
00351 
00352       // drop too small elements
00353       if(abs(fact) <= m_droptol)
00354       {
00355         jj++;
00356         continue;
00357       }
00358 
00359       // linear combination of the current row ii and the row minrow
00360       ++ki_it;
00361       for (; ki_it; ++ki_it)
00362       {
00363         Scalar prod = fact * ki_it.value();
00364         Index j       = ki_it.index();
00365         Index jpos    = jr(j);
00366         if (jpos == -1) // fill-in element
00367         {
00368           Index newpos;
00369           if (j >= ii) // dealing with the upper part
00370           {
00371             newpos = ii + sizeu;
00372             sizeu++;
00373             eigen_internal_assert(sizeu<=n);
00374           }
00375           else // dealing with the lower part
00376           {
00377             newpos = sizel;
00378             sizel++;
00379             eigen_internal_assert(sizel<=ii);
00380           }
00381           ju(newpos) = j;
00382           u(newpos) = -prod;
00383           jr(j) = newpos;
00384         }
00385         else
00386           u(jpos) -= prod;
00387       }
00388       // store the pivot element
00389       u(len) = fact;
00390       ju(len) = minrow;
00391       ++len;
00392 
00393       jj++;
00394     } // end of the elimination on the row ii
00395 
00396     // reset the upper part of the pointer jr to zero
00397     for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
00398 
00399     // 4 - partially sort and insert the elements in the m_lu matrix
00400 
00401     // sort the L-part of the row
00402     sizel = len;
00403     len = (std::min)(sizel, nnzL);
00404     typename Vector::SegmentReturnType ul(u.segment(0, sizel));
00405     typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
00406     internal::QuickSplit(ul, jul, len);
00407 
00408     // store the largest m_fill elements of the L part
00409     m_lu.startVec(ii);
00410     for(Index k = 0; k < len; k++)
00411       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
00412 
00413     // store the diagonal element
00414     // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
00415     if (u(ii) == Scalar(0))
00416       u(ii) = sqrt(m_droptol) * rownorm;
00417     m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
00418 
00419     // sort the U-part of the row
00420     // apply the dropping rule first
00421     len = 0;
00422     for(Index k = 1; k < sizeu; k++)
00423     {
00424       if(abs(u(ii+k)) > m_droptol * rownorm )
00425       {
00426         ++len;
00427         u(ii + len)  = u(ii + k);
00428         ju(ii + len) = ju(ii + k);
00429       }
00430     }
00431     sizeu = len + 1; // +1 to take into account the diagonal element
00432     len = (std::min)(sizeu, nnzU);
00433     typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
00434     typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
00435     internal::QuickSplit(uu, juu, len);
00436 
00437     // store the largest elements of the U part
00438     for(Index k = ii + 1; k < ii + len; k++)
00439       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
00440   }
00441 
00442   m_lu.finalize();
00443   m_lu.makeCompressed();
00444 
00445   m_factorizationIsOk = true;
00446   m_isInitialized = m_factorizationIsOk;
00447   m_info = Success;
00448 }
00449 
00450 namespace internal {
00451 
00452 template<typename _MatrixType, typename Rhs>
00453 struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
00454   : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
00455 {
00456   typedef IncompleteLUT<_MatrixType> Dec;
00457   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00458 
00459   template<typename Dest> void evalTo(Dest& dst) const
00460   {
00461     dec()._solve(rhs(),dst);
00462   }
00463 };
00464 
00465 } // end namespace internal
00466 
00467 } // end namespace Eigen
00468 
00469 #endif // EIGEN_INCOMPLETE_LUT_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:32:03