HybridNonLinearSolver.h
Go to the documentation of this file.
00001 // -*- coding: utf-8
00002 // vim: set fileencoding=utf-8
00003 
00004 // This file is part of Eigen, a lightweight C++ template library
00005 // for linear algebra.
00006 //
00007 // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
00008 //
00009 // This Source Code Form is subject to the terms of the Mozilla
00010 // Public License v. 2.0. If a copy of the MPL was not distributed
00011 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00012 
00013 #ifndef EIGEN_HYBRIDNONLINEARSOLVER_H
00014 #define EIGEN_HYBRIDNONLINEARSOLVER_H
00015 
00016 namespace Eigen { 
00017 
00018 namespace HybridNonLinearSolverSpace { 
00019     enum Status {
00020         Running = -1,
00021         ImproperInputParameters = 0,
00022         RelativeErrorTooSmall = 1,
00023         TooManyFunctionEvaluation = 2,
00024         TolTooSmall = 3,
00025         NotMakingProgressJacobian = 4,
00026         NotMakingProgressIterations = 5,
00027         UserAsked = 6
00028     };
00029 }
00030 
00042 template<typename FunctorType, typename Scalar=double>
00043 class HybridNonLinearSolver
00044 {
00045 public:
00046     typedef DenseIndex Index;
00047 
00048     HybridNonLinearSolver(FunctorType &_functor)
00049         : functor(_functor) { nfev=njev=iter = 0;  fnorm= 0.; useExternalScaling=false;}
00050 
00051     struct Parameters {
00052         Parameters()
00053             : factor(Scalar(100.))
00054             , maxfev(1000)
00055             , xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
00056             , nb_of_subdiagonals(-1)
00057             , nb_of_superdiagonals(-1)
00058             , epsfcn(Scalar(0.)) {}
00059         Scalar factor;
00060         Index maxfev;   // maximum number of function evaluation
00061         Scalar xtol;
00062         Index nb_of_subdiagonals;
00063         Index nb_of_superdiagonals;
00064         Scalar epsfcn;
00065     };
00066     typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
00067     typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
00068     /* TODO: if eigen provides a triangular storage, use it here */
00069     typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType;
00070 
00071     HybridNonLinearSolverSpace::Status hybrj1(
00072             FVectorType  &x,
00073             const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
00074             );
00075 
00076     HybridNonLinearSolverSpace::Status solveInit(FVectorType  &x);
00077     HybridNonLinearSolverSpace::Status solveOneStep(FVectorType  &x);
00078     HybridNonLinearSolverSpace::Status solve(FVectorType  &x);
00079 
00080     HybridNonLinearSolverSpace::Status hybrd1(
00081             FVectorType  &x,
00082             const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
00083             );
00084 
00085     HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType  &x);
00086     HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType  &x);
00087     HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType  &x);
00088 
00089     void resetParameters(void) { parameters = Parameters(); }
00090     Parameters parameters;
00091     FVectorType  fvec, qtf, diag;
00092     JacobianType fjac;
00093     UpperTriangularType R;
00094     Index nfev;
00095     Index njev;
00096     Index iter;
00097     Scalar fnorm;
00098     bool useExternalScaling; 
00099 private:
00100     FunctorType &functor;
00101     Index n;
00102     Scalar sum;
00103     bool sing;
00104     Scalar temp;
00105     Scalar delta;
00106     bool jeval;
00107     Index ncsuc;
00108     Scalar ratio;
00109     Scalar pnorm, xnorm, fnorm1;
00110     Index nslow1, nslow2;
00111     Index ncfail;
00112     Scalar actred, prered;
00113     FVectorType wa1, wa2, wa3, wa4;
00114 
00115     HybridNonLinearSolver& operator=(const HybridNonLinearSolver&);
00116 };
00117 
00118 
00119 
00120 template<typename FunctorType, typename Scalar>
00121 HybridNonLinearSolverSpace::Status
00122 HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
00123         FVectorType  &x,
00124         const Scalar tol
00125         )
00126 {
00127     n = x.size();
00128 
00129     /* check the input parameters for errors. */
00130     if (n <= 0 || tol < 0.)
00131         return HybridNonLinearSolverSpace::ImproperInputParameters;
00132 
00133     resetParameters();
00134     parameters.maxfev = 100*(n+1);
00135     parameters.xtol = tol;
00136     diag.setConstant(n, 1.);
00137     useExternalScaling = true;
00138     return solve(x);
00139 }
00140 
00141 template<typename FunctorType, typename Scalar>
00142 HybridNonLinearSolverSpace::Status
00143 HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType  &x)
00144 {
00145     n = x.size();
00146 
00147     wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
00148     fvec.resize(n);
00149     qtf.resize(n);
00150     fjac.resize(n, n);
00151     if (!useExternalScaling)
00152         diag.resize(n);
00153     eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
00154 
00155     /* Function Body */
00156     nfev = 0;
00157     njev = 0;
00158 
00159     /*     check the input parameters for errors. */
00160     if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
00161         return HybridNonLinearSolverSpace::ImproperInputParameters;
00162     if (useExternalScaling)
00163         for (Index j = 0; j < n; ++j)
00164             if (diag[j] <= 0.)
00165                 return HybridNonLinearSolverSpace::ImproperInputParameters;
00166 
00167     /*     evaluate the function at the starting point */
00168     /*     and calculate its norm. */
00169     nfev = 1;
00170     if ( functor(x, fvec) < 0)
00171         return HybridNonLinearSolverSpace::UserAsked;
00172     fnorm = fvec.stableNorm();
00173 
00174     /*     initialize iteration counter and monitors. */
00175     iter = 1;
00176     ncsuc = 0;
00177     ncfail = 0;
00178     nslow1 = 0;
00179     nslow2 = 0;
00180 
00181     return HybridNonLinearSolverSpace::Running;
00182 }
00183 
00184 template<typename FunctorType, typename Scalar>
00185 HybridNonLinearSolverSpace::Status
00186 HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType  &x)
00187 {
00188     using std::abs;
00189     
00190     eigen_assert(x.size()==n); // check the caller is not cheating us
00191 
00192     Index j;
00193     std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
00194 
00195     jeval = true;
00196 
00197     /* calculate the jacobian matrix. */
00198     if ( functor.df(x, fjac) < 0)
00199         return HybridNonLinearSolverSpace::UserAsked;
00200     ++njev;
00201 
00202     wa2 = fjac.colwise().blueNorm();
00203 
00204     /* on the first iteration and if external scaling is not used, scale according */
00205     /* to the norms of the columns of the initial jacobian. */
00206     if (iter == 1) {
00207         if (!useExternalScaling)
00208             for (j = 0; j < n; ++j)
00209                 diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
00210 
00211         /* on the first iteration, calculate the norm of the scaled x */
00212         /* and initialize the step bound delta. */
00213         xnorm = diag.cwiseProduct(x).stableNorm();
00214         delta = parameters.factor * xnorm;
00215         if (delta == 0.)
00216             delta = parameters.factor;
00217     }
00218 
00219     /* compute the qr factorization of the jacobian. */
00220     HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
00221 
00222     /* copy the triangular factor of the qr factorization into r. */
00223     R = qrfac.matrixQR();
00224 
00225     /* accumulate the orthogonal factor in fjac. */
00226     fjac = qrfac.householderQ();
00227 
00228     /* form (q transpose)*fvec and store in qtf. */
00229     qtf = fjac.transpose() * fvec;
00230 
00231     /* rescale if necessary. */
00232     if (!useExternalScaling)
00233         diag = diag.cwiseMax(wa2);
00234 
00235     while (true) {
00236         /* determine the direction p. */
00237         internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
00238 
00239         /* store the direction p and x + p. calculate the norm of p. */
00240         wa1 = -wa1;
00241         wa2 = x + wa1;
00242         pnorm = diag.cwiseProduct(wa1).stableNorm();
00243 
00244         /* on the first iteration, adjust the initial step bound. */
00245         if (iter == 1)
00246             delta = (std::min)(delta,pnorm);
00247 
00248         /* evaluate the function at x + p and calculate its norm. */
00249         if ( functor(wa2, wa4) < 0)
00250             return HybridNonLinearSolverSpace::UserAsked;
00251         ++nfev;
00252         fnorm1 = wa4.stableNorm();
00253 
00254         /* compute the scaled actual reduction. */
00255         actred = -1.;
00256         if (fnorm1 < fnorm) /* Computing 2nd power */
00257             actred = 1. - numext::abs2(fnorm1 / fnorm);
00258 
00259         /* compute the scaled predicted reduction. */
00260         wa3 = R.template triangularView<Upper>()*wa1 + qtf;
00261         temp = wa3.stableNorm();
00262         prered = 0.;
00263         if (temp < fnorm) /* Computing 2nd power */
00264             prered = 1. - numext::abs2(temp / fnorm);
00265 
00266         /* compute the ratio of the actual to the predicted reduction. */
00267         ratio = 0.;
00268         if (prered > 0.)
00269             ratio = actred / prered;
00270 
00271         /* update the step bound. */
00272         if (ratio < Scalar(.1)) {
00273             ncsuc = 0;
00274             ++ncfail;
00275             delta = Scalar(.5) * delta;
00276         } else {
00277             ncfail = 0;
00278             ++ncsuc;
00279             if (ratio >= Scalar(.5) || ncsuc > 1)
00280                 delta = (std::max)(delta, pnorm / Scalar(.5));
00281             if (abs(ratio - 1.) <= Scalar(.1)) {
00282                 delta = pnorm / Scalar(.5);
00283             }
00284         }
00285 
00286         /* test for successful iteration. */
00287         if (ratio >= Scalar(1e-4)) {
00288             /* successful iteration. update x, fvec, and their norms. */
00289             x = wa2;
00290             wa2 = diag.cwiseProduct(x);
00291             fvec = wa4;
00292             xnorm = wa2.stableNorm();
00293             fnorm = fnorm1;
00294             ++iter;
00295         }
00296 
00297         /* determine the progress of the iteration. */
00298         ++nslow1;
00299         if (actred >= Scalar(.001))
00300             nslow1 = 0;
00301         if (jeval)
00302             ++nslow2;
00303         if (actred >= Scalar(.1))
00304             nslow2 = 0;
00305 
00306         /* test for convergence. */
00307         if (delta <= parameters.xtol * xnorm || fnorm == 0.)
00308             return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
00309 
00310         /* tests for termination and stringent tolerances. */
00311         if (nfev >= parameters.maxfev)
00312             return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
00313         if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
00314             return HybridNonLinearSolverSpace::TolTooSmall;
00315         if (nslow2 == 5)
00316             return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
00317         if (nslow1 == 10)
00318             return HybridNonLinearSolverSpace::NotMakingProgressIterations;
00319 
00320         /* criterion for recalculating jacobian. */
00321         if (ncfail == 2)
00322             break; // leave inner loop and go for the next outer loop iteration
00323 
00324         /* calculate the rank one modification to the jacobian */
00325         /* and update qtf if necessary. */
00326         wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
00327         wa2 = fjac.transpose() * wa4;
00328         if (ratio >= Scalar(1e-4))
00329             qtf = wa2;
00330         wa2 = (wa2-wa3)/pnorm;
00331 
00332         /* compute the qr factorization of the updated jacobian. */
00333         internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
00334         internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
00335         internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
00336 
00337         jeval = false;
00338     }
00339     return HybridNonLinearSolverSpace::Running;
00340 }
00341 
00342 template<typename FunctorType, typename Scalar>
00343 HybridNonLinearSolverSpace::Status
00344 HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType  &x)
00345 {
00346     HybridNonLinearSolverSpace::Status status = solveInit(x);
00347     if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
00348         return status;
00349     while (status==HybridNonLinearSolverSpace::Running)
00350         status = solveOneStep(x);
00351     return status;
00352 }
00353 
00354 
00355 
00356 template<typename FunctorType, typename Scalar>
00357 HybridNonLinearSolverSpace::Status
00358 HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
00359         FVectorType  &x,
00360         const Scalar tol
00361         )
00362 {
00363     n = x.size();
00364 
00365     /* check the input parameters for errors. */
00366     if (n <= 0 || tol < 0.)
00367         return HybridNonLinearSolverSpace::ImproperInputParameters;
00368 
00369     resetParameters();
00370     parameters.maxfev = 200*(n+1);
00371     parameters.xtol = tol;
00372 
00373     diag.setConstant(n, 1.);
00374     useExternalScaling = true;
00375     return solveNumericalDiff(x);
00376 }
00377 
00378 template<typename FunctorType, typename Scalar>
00379 HybridNonLinearSolverSpace::Status
00380 HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType  &x)
00381 {
00382     n = x.size();
00383 
00384     if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
00385     if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
00386 
00387     wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
00388     qtf.resize(n);
00389     fjac.resize(n, n);
00390     fvec.resize(n);
00391     if (!useExternalScaling)
00392         diag.resize(n);
00393     eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
00394 
00395     /* Function Body */
00396     nfev = 0;
00397     njev = 0;
00398 
00399     /*     check the input parameters for errors. */
00400     if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
00401         return HybridNonLinearSolverSpace::ImproperInputParameters;
00402     if (useExternalScaling)
00403         for (Index j = 0; j < n; ++j)
00404             if (diag[j] <= 0.)
00405                 return HybridNonLinearSolverSpace::ImproperInputParameters;
00406 
00407     /*     evaluate the function at the starting point */
00408     /*     and calculate its norm. */
00409     nfev = 1;
00410     if ( functor(x, fvec) < 0)
00411         return HybridNonLinearSolverSpace::UserAsked;
00412     fnorm = fvec.stableNorm();
00413 
00414     /*     initialize iteration counter and monitors. */
00415     iter = 1;
00416     ncsuc = 0;
00417     ncfail = 0;
00418     nslow1 = 0;
00419     nslow2 = 0;
00420 
00421     return HybridNonLinearSolverSpace::Running;
00422 }
00423 
00424 template<typename FunctorType, typename Scalar>
00425 HybridNonLinearSolverSpace::Status
00426 HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType  &x)
00427 {
00428     using std::sqrt;
00429     using std::abs;
00430     
00431     assert(x.size()==n); // check the caller is not cheating us
00432 
00433     Index j;
00434     std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
00435 
00436     jeval = true;
00437     if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
00438     if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
00439 
00440     /* calculate the jacobian matrix. */
00441     if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0)
00442         return HybridNonLinearSolverSpace::UserAsked;
00443     nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);
00444 
00445     wa2 = fjac.colwise().blueNorm();
00446 
00447     /* on the first iteration and if external scaling is not used, scale according */
00448     /* to the norms of the columns of the initial jacobian. */
00449     if (iter == 1) {
00450         if (!useExternalScaling)
00451             for (j = 0; j < n; ++j)
00452                 diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
00453 
00454         /* on the first iteration, calculate the norm of the scaled x */
00455         /* and initialize the step bound delta. */
00456         xnorm = diag.cwiseProduct(x).stableNorm();
00457         delta = parameters.factor * xnorm;
00458         if (delta == 0.)
00459             delta = parameters.factor;
00460     }
00461 
00462     /* compute the qr factorization of the jacobian. */
00463     HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
00464 
00465     /* copy the triangular factor of the qr factorization into r. */
00466     R = qrfac.matrixQR();
00467 
00468     /* accumulate the orthogonal factor in fjac. */
00469     fjac = qrfac.householderQ();
00470 
00471     /* form (q transpose)*fvec and store in qtf. */
00472     qtf = fjac.transpose() * fvec;
00473 
00474     /* rescale if necessary. */
00475     if (!useExternalScaling)
00476         diag = diag.cwiseMax(wa2);
00477 
00478     while (true) {
00479         /* determine the direction p. */
00480         internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
00481 
00482         /* store the direction p and x + p. calculate the norm of p. */
00483         wa1 = -wa1;
00484         wa2 = x + wa1;
00485         pnorm = diag.cwiseProduct(wa1).stableNorm();
00486 
00487         /* on the first iteration, adjust the initial step bound. */
00488         if (iter == 1)
00489             delta = (std::min)(delta,pnorm);
00490 
00491         /* evaluate the function at x + p and calculate its norm. */
00492         if ( functor(wa2, wa4) < 0)
00493             return HybridNonLinearSolverSpace::UserAsked;
00494         ++nfev;
00495         fnorm1 = wa4.stableNorm();
00496 
00497         /* compute the scaled actual reduction. */
00498         actred = -1.;
00499         if (fnorm1 < fnorm) /* Computing 2nd power */
00500             actred = 1. - numext::abs2(fnorm1 / fnorm);
00501 
00502         /* compute the scaled predicted reduction. */
00503         wa3 = R.template triangularView<Upper>()*wa1 + qtf;
00504         temp = wa3.stableNorm();
00505         prered = 0.;
00506         if (temp < fnorm) /* Computing 2nd power */
00507             prered = 1. - numext::abs2(temp / fnorm);
00508 
00509         /* compute the ratio of the actual to the predicted reduction. */
00510         ratio = 0.;
00511         if (prered > 0.)
00512             ratio = actred / prered;
00513 
00514         /* update the step bound. */
00515         if (ratio < Scalar(.1)) {
00516             ncsuc = 0;
00517             ++ncfail;
00518             delta = Scalar(.5) * delta;
00519         } else {
00520             ncfail = 0;
00521             ++ncsuc;
00522             if (ratio >= Scalar(.5) || ncsuc > 1)
00523                 delta = (std::max)(delta, pnorm / Scalar(.5));
00524             if (abs(ratio - 1.) <= Scalar(.1)) {
00525                 delta = pnorm / Scalar(.5);
00526             }
00527         }
00528 
00529         /* test for successful iteration. */
00530         if (ratio >= Scalar(1e-4)) {
00531             /* successful iteration. update x, fvec, and their norms. */
00532             x = wa2;
00533             wa2 = diag.cwiseProduct(x);
00534             fvec = wa4;
00535             xnorm = wa2.stableNorm();
00536             fnorm = fnorm1;
00537             ++iter;
00538         }
00539 
00540         /* determine the progress of the iteration. */
00541         ++nslow1;
00542         if (actred >= Scalar(.001))
00543             nslow1 = 0;
00544         if (jeval)
00545             ++nslow2;
00546         if (actred >= Scalar(.1))
00547             nslow2 = 0;
00548 
00549         /* test for convergence. */
00550         if (delta <= parameters.xtol * xnorm || fnorm == 0.)
00551             return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
00552 
00553         /* tests for termination and stringent tolerances. */
00554         if (nfev >= parameters.maxfev)
00555             return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
00556         if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
00557             return HybridNonLinearSolverSpace::TolTooSmall;
00558         if (nslow2 == 5)
00559             return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
00560         if (nslow1 == 10)
00561             return HybridNonLinearSolverSpace::NotMakingProgressIterations;
00562 
00563         /* criterion for recalculating jacobian. */
00564         if (ncfail == 2)
00565             break; // leave inner loop and go for the next outer loop iteration
00566 
00567         /* calculate the rank one modification to the jacobian */
00568         /* and update qtf if necessary. */
00569         wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
00570         wa2 = fjac.transpose() * wa4;
00571         if (ratio >= Scalar(1e-4))
00572             qtf = wa2;
00573         wa2 = (wa2-wa3)/pnorm;
00574 
00575         /* compute the qr factorization of the updated jacobian. */
00576         internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
00577         internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
00578         internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
00579 
00580         jeval = false;
00581     }
00582     return HybridNonLinearSolverSpace::Running;
00583 }
00584 
00585 template<typename FunctorType, typename Scalar>
00586 HybridNonLinearSolverSpace::Status
00587 HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType  &x)
00588 {
00589     HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x);
00590     if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
00591         return status;
00592     while (status==HybridNonLinearSolverSpace::Running)
00593         status = solveNumericalDiffOneStep(x);
00594     return status;
00595 }
00596 
00597 } // end namespace Eigen
00598 
00599 #endif // EIGEN_HYBRIDNONLINEARSOLVER_H
00600 
00601 //vim: ai ts=4 sts=4 et sw=4


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:31:49