AngleAxis.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_ANGLEAXIS_H
00011 #define EIGEN_ANGLEAXIS_H
00012 
00013 namespace Eigen { 
00014 
00041 namespace internal {
00042 template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
00043 {
00044   typedef _Scalar Scalar;
00045 };
00046 }
00047 
00048 template<typename _Scalar>
00049 class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
00050 {
00051   typedef RotationBase<AngleAxis<_Scalar>,3> Base;
00052 
00053 public:
00054 
00055   using Base::operator*;
00056 
00057   enum { Dim = 3 };
00059   typedef _Scalar Scalar;
00060   typedef Matrix<Scalar,3,3> Matrix3;
00061   typedef Matrix<Scalar,3,1> Vector3;
00062   typedef Quaternion<Scalar> QuaternionType;
00063 
00064 protected:
00065 
00066   Vector3 m_axis;
00067   Scalar m_angle;
00068 
00069 public:
00070 
00072   AngleAxis() {}
00078   template<typename Derived>
00079   inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
00081   template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
00083   template<typename Derived>
00084   inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
00085 
00086   Scalar angle() const { return m_angle; }
00087   Scalar& angle() { return m_angle; }
00088 
00089   const Vector3& axis() const { return m_axis; }
00090   Vector3& axis() { return m_axis; }
00091 
00093   inline QuaternionType operator* (const AngleAxis& other) const
00094   { return QuaternionType(*this) * QuaternionType(other); }
00095 
00097   inline QuaternionType operator* (const QuaternionType& other) const
00098   { return QuaternionType(*this) * other; }
00099 
00101   friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
00102   { return a * QuaternionType(b); }
00103 
00105   AngleAxis inverse() const
00106   { return AngleAxis(-m_angle, m_axis); }
00107 
00108   template<class QuatDerived>
00109   AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
00110   template<typename Derived>
00111   AngleAxis& operator=(const MatrixBase<Derived>& m);
00112 
00113   template<typename Derived>
00114   AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
00115   Matrix3 toRotationMatrix(void) const;
00116 
00122   template<typename NewScalarType>
00123   inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
00124   { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
00125 
00127   template<typename OtherScalarType>
00128   inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
00129   {
00130     m_axis = other.axis().template cast<Scalar>();
00131     m_angle = Scalar(other.angle());
00132   }
00133 
00134   static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
00135 
00140   bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
00141   { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
00142 };
00143 
00146 typedef AngleAxis<float> AngleAxisf;
00149 typedef AngleAxis<double> AngleAxisd;
00150 
00157 template<typename Scalar>
00158 template<typename QuatDerived>
00159 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
00160 {
00161   using std::acos;
00162   using std::min;
00163   using std::max;
00164   using std::sqrt;
00165   Scalar n2 = q.vec().squaredNorm();
00166   if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
00167   {
00168     m_angle = 0;
00169     m_axis << 1, 0, 0;
00170   }
00171   else
00172   {
00173     m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
00174     m_axis = q.vec() / sqrt(n2);
00175   }
00176   return *this;
00177 }
00178 
00181 template<typename Scalar>
00182 template<typename Derived>
00183 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
00184 {
00185   // Since a direct conversion would not be really faster,
00186   // let's use the robust Quaternion implementation:
00187   return *this = QuaternionType(mat);
00188 }
00189 
00193 template<typename Scalar>
00194 template<typename Derived>
00195 AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
00196 {
00197   return *this = QuaternionType(mat);
00198 }
00199 
00202 template<typename Scalar>
00203 typename AngleAxis<Scalar>::Matrix3
00204 AngleAxis<Scalar>::toRotationMatrix(void) const
00205 {
00206   using std::sin;
00207   using std::cos;
00208   Matrix3 res;
00209   Vector3 sin_axis  = sin(m_angle) * m_axis;
00210   Scalar c = cos(m_angle);
00211   Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
00212 
00213   Scalar tmp;
00214   tmp = cos1_axis.x() * m_axis.y();
00215   res.coeffRef(0,1) = tmp - sin_axis.z();
00216   res.coeffRef(1,0) = tmp + sin_axis.z();
00217 
00218   tmp = cos1_axis.x() * m_axis.z();
00219   res.coeffRef(0,2) = tmp + sin_axis.y();
00220   res.coeffRef(2,0) = tmp - sin_axis.y();
00221 
00222   tmp = cos1_axis.y() * m_axis.z();
00223   res.coeffRef(1,2) = tmp - sin_axis.x();
00224   res.coeffRef(2,1) = tmp + sin_axis.x();
00225 
00226   res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
00227 
00228   return res;
00229 }
00230 
00231 } // end namespace Eigen
00232 
00233 #endif // EIGEN_ANGLEAXIS_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:28:56