GeneralMatrixVector.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_GENERAL_MATRIX_VECTOR_H
00011 #define EIGEN_GENERAL_MATRIX_VECTOR_H
00012 
00013 namespace Eigen { 
00014 
00015 namespace internal {
00016 
00017 /* Optimized col-major matrix * vector product:
00018  * This algorithm processes 4 columns at onces that allows to both reduce
00019  * the number of load/stores of the result by a factor 4 and to reduce
00020  * the instruction dependency. Moreover, we know that all bands have the
00021  * same alignment pattern.
00022  *
00023  * Mixing type logic: C += alpha * A * B
00024  *  |  A  |  B  |alpha| comments
00025  *  |real |cplx |cplx | no vectorization
00026  *  |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization
00027  *  |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp
00028  *  |cplx |real |real | optimal case, vectorization possible via real-cplx mul
00029  */
00030 template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
00031 struct general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
00032 {
00033 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
00034 
00035 enum {
00036   Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
00037               && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
00038   LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
00039   RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
00040   ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
00041 };
00042 
00043 typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
00044 typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
00045 typedef typename packet_traits<ResScalar>::type  _ResPacket;
00046 
00047 typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
00048 typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
00049 typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
00050 
00051 EIGEN_DONT_INLINE static void run(
00052   Index rows, Index cols,
00053   const LhsScalar* lhs, Index lhsStride,
00054   const RhsScalar* rhs, Index rhsIncr,
00055   ResScalar* res, Index resIncr, RhsScalar alpha);
00056 };
00057 
00058 template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
00059 EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>::run(
00060   Index rows, Index cols,
00061   const LhsScalar* lhs, Index lhsStride,
00062   const RhsScalar* rhs, Index rhsIncr,
00063   ResScalar* res, Index resIncr, RhsScalar alpha)
00064 {
00065   EIGEN_UNUSED_VARIABLE(resIncr)
00066   eigen_internal_assert(resIncr==1);
00067   #ifdef _EIGEN_ACCUMULATE_PACKETS
00068   #error _EIGEN_ACCUMULATE_PACKETS has already been defined
00069   #endif
00070   #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) \
00071     pstore(&res[j], \
00072       padd(pload<ResPacket>(&res[j]), \
00073         padd( \
00074           padd(pcj.pmul(EIGEN_CAT(ploa , A0)<LhsPacket>(&lhs0[j]),    ptmp0), \
00075                   pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs1[j]),   ptmp1)), \
00076           padd(pcj.pmul(EIGEN_CAT(ploa , A2)<LhsPacket>(&lhs2[j]),    ptmp2), \
00077                   pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs3[j]),   ptmp3)) )))
00078 
00079   conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
00080   conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
00081   if(ConjugateRhs)
00082     alpha = numext::conj(alpha);
00083 
00084   enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned };
00085   const Index columnsAtOnce = 4;
00086   const Index peels = 2;
00087   const Index LhsPacketAlignedMask = LhsPacketSize-1;
00088   const Index ResPacketAlignedMask = ResPacketSize-1;
00089 //  const Index PeelAlignedMask = ResPacketSize*peels-1;
00090   const Index size = rows;
00091   
00092   // How many coeffs of the result do we have to skip to be aligned.
00093   // Here we assume data are at least aligned on the base scalar type.
00094   Index alignedStart = internal::first_aligned(res,size);
00095   Index alignedSize = ResPacketSize>1 ? alignedStart + ((size-alignedStart) & ~ResPacketAlignedMask) : 0;
00096   const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
00097 
00098   const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
00099   Index alignmentPattern = alignmentStep==0 ? AllAligned
00100                        : alignmentStep==(LhsPacketSize/2) ? EvenAligned
00101                        : FirstAligned;
00102 
00103   // we cannot assume the first element is aligned because of sub-matrices
00104   const Index lhsAlignmentOffset = internal::first_aligned(lhs,size);
00105 
00106   // find how many columns do we have to skip to be aligned with the result (if possible)
00107   Index skipColumns = 0;
00108   // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
00109   if( (size_t(lhs)%sizeof(LhsScalar)) || (size_t(res)%sizeof(ResScalar)) )
00110   {
00111     alignedSize = 0;
00112     alignedStart = 0;
00113   }
00114   else if (LhsPacketSize>1)
00115   {
00116     eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || size<LhsPacketSize);
00117 
00118     while (skipColumns<LhsPacketSize &&
00119           alignedStart != ((lhsAlignmentOffset + alignmentStep*skipColumns)%LhsPacketSize))
00120       ++skipColumns;
00121     if (skipColumns==LhsPacketSize)
00122     {
00123       // nothing can be aligned, no need to skip any column
00124       alignmentPattern = NoneAligned;
00125       skipColumns = 0;
00126     }
00127     else
00128     {
00129       skipColumns = (std::min)(skipColumns,cols);
00130       // note that the skiped columns are processed later.
00131     }
00132 
00133     eigen_internal_assert(  (alignmentPattern==NoneAligned)
00134                       || (skipColumns + columnsAtOnce >= cols)
00135                       || LhsPacketSize > size
00136                       || (size_t(lhs+alignedStart+lhsStride*skipColumns)%sizeof(LhsPacket))==0);
00137   }
00138   else if(Vectorizable)
00139   {
00140     alignedStart = 0;
00141     alignedSize = size;
00142     alignmentPattern = AllAligned;
00143   }
00144 
00145   Index offset1 = (FirstAligned && alignmentStep==1?3:1);
00146   Index offset3 = (FirstAligned && alignmentStep==1?1:3);
00147 
00148   Index columnBound = ((cols-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
00149   for (Index i=skipColumns; i<columnBound; i+=columnsAtOnce)
00150   {
00151     RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[i*rhsIncr]),
00152               ptmp1 = pset1<RhsPacket>(alpha*rhs[(i+offset1)*rhsIncr]),
00153               ptmp2 = pset1<RhsPacket>(alpha*rhs[(i+2)*rhsIncr]),
00154               ptmp3 = pset1<RhsPacket>(alpha*rhs[(i+offset3)*rhsIncr]);
00155 
00156     // this helps a lot generating better binary code
00157     const LhsScalar *lhs0 = lhs + i*lhsStride,     *lhs1 = lhs + (i+offset1)*lhsStride,
00158                     *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
00159 
00160     if (Vectorizable)
00161     {
00162       /* explicit vectorization */
00163       // process initial unaligned coeffs
00164       for (Index j=0; j<alignedStart; ++j)
00165       {
00166         res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
00167         res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
00168         res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
00169         res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
00170       }
00171 
00172       if (alignedSize>alignedStart)
00173       {
00174         switch(alignmentPattern)
00175         {
00176           case AllAligned:
00177             for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
00178               _EIGEN_ACCUMULATE_PACKETS(d,d,d);
00179             break;
00180           case EvenAligned:
00181             for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
00182               _EIGEN_ACCUMULATE_PACKETS(d,du,d);
00183             break;
00184           case FirstAligned:
00185           {
00186             Index j = alignedStart;
00187             if(peels>1)
00188             {
00189               LhsPacket A00, A01, A02, A03, A10, A11, A12, A13;
00190               ResPacket T0, T1;
00191 
00192               A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
00193               A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
00194               A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
00195 
00196               for (; j<peeledSize; j+=peels*ResPacketSize)
00197               {
00198                 A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]);  palign<1>(A01,A11);
00199                 A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]);  palign<2>(A02,A12);
00200                 A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]);  palign<3>(A03,A13);
00201 
00202                 A00 = pload<LhsPacket>(&lhs0[j]);
00203                 A10 = pload<LhsPacket>(&lhs0[j+LhsPacketSize]);
00204                 T0  = pcj.pmadd(A00, ptmp0, pload<ResPacket>(&res[j]));
00205                 T1  = pcj.pmadd(A10, ptmp0, pload<ResPacket>(&res[j+ResPacketSize]));
00206 
00207                 T0  = pcj.pmadd(A01, ptmp1, T0);
00208                 A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]);  palign<1>(A11,A01);
00209                 T0  = pcj.pmadd(A02, ptmp2, T0);
00210                 A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]);  palign<2>(A12,A02);
00211                 T0  = pcj.pmadd(A03, ptmp3, T0);
00212                 pstore(&res[j],T0);
00213                 A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]);  palign<3>(A13,A03);
00214                 T1  = pcj.pmadd(A11, ptmp1, T1);
00215                 T1  = pcj.pmadd(A12, ptmp2, T1);
00216                 T1  = pcj.pmadd(A13, ptmp3, T1);
00217                 pstore(&res[j+ResPacketSize],T1);
00218               }
00219             }
00220             for (; j<alignedSize; j+=ResPacketSize)
00221               _EIGEN_ACCUMULATE_PACKETS(d,du,du);
00222             break;
00223           }
00224           default:
00225             for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
00226               _EIGEN_ACCUMULATE_PACKETS(du,du,du);
00227             break;
00228         }
00229       }
00230     } // end explicit vectorization
00231 
00232     /* process remaining coeffs (or all if there is no explicit vectorization) */
00233     for (Index j=alignedSize; j<size; ++j)
00234     {
00235       res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
00236       res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
00237       res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
00238       res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
00239     }
00240   }
00241 
00242   // process remaining first and last columns (at most columnsAtOnce-1)
00243   Index end = cols;
00244   Index start = columnBound;
00245   do
00246   {
00247     for (Index k=start; k<end; ++k)
00248     {
00249       RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[k*rhsIncr]);
00250       const LhsScalar* lhs0 = lhs + k*lhsStride;
00251 
00252       if (Vectorizable)
00253       {
00254         /* explicit vectorization */
00255         // process first unaligned result's coeffs
00256         for (Index j=0; j<alignedStart; ++j)
00257           res[j] += cj.pmul(lhs0[j], pfirst(ptmp0));
00258         // process aligned result's coeffs
00259         if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
00260           for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
00261             pstore(&res[i], pcj.pmadd(pload<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
00262         else
00263           for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
00264             pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
00265       }
00266 
00267       // process remaining scalars (or all if no explicit vectorization)
00268       for (Index i=alignedSize; i<size; ++i)
00269         res[i] += cj.pmul(lhs0[i], pfirst(ptmp0));
00270     }
00271     if (skipColumns)
00272     {
00273       start = 0;
00274       end = skipColumns;
00275       skipColumns = 0;
00276     }
00277     else
00278       break;
00279   } while(Vectorizable);
00280   #undef _EIGEN_ACCUMULATE_PACKETS
00281 }
00282 
00283 /* Optimized row-major matrix * vector product:
00284  * This algorithm processes 4 rows at onces that allows to both reduce
00285  * the number of load/stores of the result by a factor 4 and to reduce
00286  * the instruction dependency. Moreover, we know that all bands have the
00287  * same alignment pattern.
00288  *
00289  * Mixing type logic:
00290  *  - alpha is always a complex (or converted to a complex)
00291  *  - no vectorization
00292  */
00293 template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
00294 struct general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
00295 {
00296 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
00297 
00298 enum {
00299   Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
00300               && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
00301   LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
00302   RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
00303   ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
00304 };
00305 
00306 typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
00307 typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
00308 typedef typename packet_traits<ResScalar>::type  _ResPacket;
00309 
00310 typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
00311 typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
00312 typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
00313   
00314 EIGEN_DONT_INLINE static void run(
00315   Index rows, Index cols,
00316   const LhsScalar* lhs, Index lhsStride,
00317   const RhsScalar* rhs, Index rhsIncr,
00318   ResScalar* res, Index resIncr,
00319   ResScalar alpha);
00320 };
00321 
00322 template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
00323 EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>::run(
00324   Index rows, Index cols,
00325   const LhsScalar* lhs, Index lhsStride,
00326   const RhsScalar* rhs, Index rhsIncr,
00327   ResScalar* res, Index resIncr,
00328   ResScalar alpha)
00329 {
00330   EIGEN_UNUSED_VARIABLE(rhsIncr);
00331   eigen_internal_assert(rhsIncr==1);
00332   #ifdef _EIGEN_ACCUMULATE_PACKETS
00333   #error _EIGEN_ACCUMULATE_PACKETS has already been defined
00334   #endif
00335 
00336   #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) {\
00337     RhsPacket b = pload<RhsPacket>(&rhs[j]); \
00338     ptmp0 = pcj.pmadd(EIGEN_CAT(ploa,A0) <LhsPacket>(&lhs0[j]), b, ptmp0); \
00339     ptmp1 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs1[j]), b, ptmp1); \
00340     ptmp2 = pcj.pmadd(EIGEN_CAT(ploa,A2) <LhsPacket>(&lhs2[j]), b, ptmp2); \
00341     ptmp3 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs3[j]), b, ptmp3); }
00342 
00343   conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
00344   conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
00345 
00346   enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 };
00347   const Index rowsAtOnce = 4;
00348   const Index peels = 2;
00349   const Index RhsPacketAlignedMask = RhsPacketSize-1;
00350   const Index LhsPacketAlignedMask = LhsPacketSize-1;
00351 //   const Index PeelAlignedMask = RhsPacketSize*peels-1;
00352   const Index depth = cols;
00353 
00354   // How many coeffs of the result do we have to skip to be aligned.
00355   // Here we assume data are at least aligned on the base scalar type
00356   // if that's not the case then vectorization is discarded, see below.
00357   Index alignedStart = internal::first_aligned(rhs, depth);
00358   Index alignedSize = RhsPacketSize>1 ? alignedStart + ((depth-alignedStart) & ~RhsPacketAlignedMask) : 0;
00359   const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
00360 
00361   const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
00362   Index alignmentPattern = alignmentStep==0 ? AllAligned
00363                          : alignmentStep==(LhsPacketSize/2) ? EvenAligned
00364                          : FirstAligned;
00365 
00366   // we cannot assume the first element is aligned because of sub-matrices
00367   const Index lhsAlignmentOffset = internal::first_aligned(lhs,depth);
00368 
00369   // find how many rows do we have to skip to be aligned with rhs (if possible)
00370   Index skipRows = 0;
00371   // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
00372   if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || (size_t(lhs)%sizeof(LhsScalar)) || (size_t(rhs)%sizeof(RhsScalar)) )
00373   {
00374     alignedSize = 0;
00375     alignedStart = 0;
00376   }
00377   else if (LhsPacketSize>1)
00378   {
00379     eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0  || depth<LhsPacketSize);
00380 
00381     while (skipRows<LhsPacketSize &&
00382            alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%LhsPacketSize))
00383       ++skipRows;
00384     if (skipRows==LhsPacketSize)
00385     {
00386       // nothing can be aligned, no need to skip any column
00387       alignmentPattern = NoneAligned;
00388       skipRows = 0;
00389     }
00390     else
00391     {
00392       skipRows = (std::min)(skipRows,Index(rows));
00393       // note that the skiped columns are processed later.
00394     }
00395     eigen_internal_assert(  alignmentPattern==NoneAligned
00396                       || LhsPacketSize==1
00397                       || (skipRows + rowsAtOnce >= rows)
00398                       || LhsPacketSize > depth
00399                       || (size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(LhsPacket))==0);
00400   }
00401   else if(Vectorizable)
00402   {
00403     alignedStart = 0;
00404     alignedSize = depth;
00405     alignmentPattern = AllAligned;
00406   }
00407 
00408   Index offset1 = (FirstAligned && alignmentStep==1?3:1);
00409   Index offset3 = (FirstAligned && alignmentStep==1?1:3);
00410 
00411   Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
00412   for (Index i=skipRows; i<rowBound; i+=rowsAtOnce)
00413   {
00414     EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
00415     ResScalar tmp1 = ResScalar(0), tmp2 = ResScalar(0), tmp3 = ResScalar(0);
00416 
00417     // this helps the compiler generating good binary code
00418     const LhsScalar *lhs0 = lhs + i*lhsStride,     *lhs1 = lhs + (i+offset1)*lhsStride,
00419                     *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
00420 
00421     if (Vectorizable)
00422     {
00423       /* explicit vectorization */
00424       ResPacket ptmp0 = pset1<ResPacket>(ResScalar(0)), ptmp1 = pset1<ResPacket>(ResScalar(0)),
00425                 ptmp2 = pset1<ResPacket>(ResScalar(0)), ptmp3 = pset1<ResPacket>(ResScalar(0));
00426 
00427       // process initial unaligned coeffs
00428       // FIXME this loop get vectorized by the compiler !
00429       for (Index j=0; j<alignedStart; ++j)
00430       {
00431         RhsScalar b = rhs[j];
00432         tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
00433         tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
00434       }
00435 
00436       if (alignedSize>alignedStart)
00437       {
00438         switch(alignmentPattern)
00439         {
00440           case AllAligned:
00441             for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
00442               _EIGEN_ACCUMULATE_PACKETS(d,d,d);
00443             break;
00444           case EvenAligned:
00445             for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
00446               _EIGEN_ACCUMULATE_PACKETS(d,du,d);
00447             break;
00448           case FirstAligned:
00449           {
00450             Index j = alignedStart;
00451             if (peels>1)
00452             {
00453               /* Here we proccess 4 rows with with two peeled iterations to hide
00454                * the overhead of unaligned loads. Moreover unaligned loads are handled
00455                * using special shift/move operations between the two aligned packets
00456                * overlaping the desired unaligned packet. This is *much* more efficient
00457                * than basic unaligned loads.
00458                */
00459               LhsPacket A01, A02, A03, A11, A12, A13;
00460               A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
00461               A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
00462               A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
00463 
00464               for (; j<peeledSize; j+=peels*RhsPacketSize)
00465               {
00466                 RhsPacket b = pload<RhsPacket>(&rhs[j]);
00467                 A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]);  palign<1>(A01,A11);
00468                 A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]);  palign<2>(A02,A12);
00469                 A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]);  palign<3>(A03,A13);
00470 
00471                 ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), b, ptmp0);
00472                 ptmp1 = pcj.pmadd(A01, b, ptmp1);
00473                 A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]);  palign<1>(A11,A01);
00474                 ptmp2 = pcj.pmadd(A02, b, ptmp2);
00475                 A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]);  palign<2>(A12,A02);
00476                 ptmp3 = pcj.pmadd(A03, b, ptmp3);
00477                 A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]);  palign<3>(A13,A03);
00478 
00479                 b = pload<RhsPacket>(&rhs[j+RhsPacketSize]);
00480                 ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j+LhsPacketSize]), b, ptmp0);
00481                 ptmp1 = pcj.pmadd(A11, b, ptmp1);
00482                 ptmp2 = pcj.pmadd(A12, b, ptmp2);
00483                 ptmp3 = pcj.pmadd(A13, b, ptmp3);
00484               }
00485             }
00486             for (; j<alignedSize; j+=RhsPacketSize)
00487               _EIGEN_ACCUMULATE_PACKETS(d,du,du);
00488             break;
00489           }
00490           default:
00491             for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
00492               _EIGEN_ACCUMULATE_PACKETS(du,du,du);
00493             break;
00494         }
00495         tmp0 += predux(ptmp0);
00496         tmp1 += predux(ptmp1);
00497         tmp2 += predux(ptmp2);
00498         tmp3 += predux(ptmp3);
00499       }
00500     } // end explicit vectorization
00501 
00502     // process remaining coeffs (or all if no explicit vectorization)
00503     // FIXME this loop get vectorized by the compiler !
00504     for (Index j=alignedSize; j<depth; ++j)
00505     {
00506       RhsScalar b = rhs[j];
00507       tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
00508       tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
00509     }
00510     res[i*resIncr]            += alpha*tmp0;
00511     res[(i+offset1)*resIncr]  += alpha*tmp1;
00512     res[(i+2)*resIncr]        += alpha*tmp2;
00513     res[(i+offset3)*resIncr]  += alpha*tmp3;
00514   }
00515 
00516   // process remaining first and last rows (at most columnsAtOnce-1)
00517   Index end = rows;
00518   Index start = rowBound;
00519   do
00520   {
00521     for (Index i=start; i<end; ++i)
00522     {
00523       EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
00524       ResPacket ptmp0 = pset1<ResPacket>(tmp0);
00525       const LhsScalar* lhs0 = lhs + i*lhsStride;
00526       // process first unaligned result's coeffs
00527       // FIXME this loop get vectorized by the compiler !
00528       for (Index j=0; j<alignedStart; ++j)
00529         tmp0 += cj.pmul(lhs0[j], rhs[j]);
00530 
00531       if (alignedSize>alignedStart)
00532       {
00533         // process aligned rhs coeffs
00534         if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
00535           for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
00536             ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
00537         else
00538           for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
00539             ptmp0 = pcj.pmadd(ploadu<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
00540         tmp0 += predux(ptmp0);
00541       }
00542 
00543       // process remaining scalars
00544       // FIXME this loop get vectorized by the compiler !
00545       for (Index j=alignedSize; j<depth; ++j)
00546         tmp0 += cj.pmul(lhs0[j], rhs[j]);
00547       res[i*resIncr] += alpha*tmp0;
00548     }
00549     if (skipRows)
00550     {
00551       start = 0;
00552       end = skipRows;
00553       skipRows = 0;
00554     }
00555     else
00556       break;
00557   } while(Vectorizable);
00558 
00559   #undef _EIGEN_ACCUMULATE_PACKETS
00560 }
00561 
00562 } // end namespace internal
00563 
00564 } // end namespace Eigen
00565 
00566 #endif // EIGEN_GENERAL_MATRIX_VECTOR_H


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:31:20