00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_GMRES_H
00012 #define EIGEN_GMRES_H
00013
00014 namespace Eigen {
00015
00016 namespace internal {
00017
00055 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
00056 bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
00057 int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
00058
00059 using std::sqrt;
00060 using std::abs;
00061
00062 typedef typename Dest::RealScalar RealScalar;
00063 typedef typename Dest::Scalar Scalar;
00064 typedef Matrix < Scalar, Dynamic, 1 > VectorType;
00065 typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
00066
00067 RealScalar tol = tol_error;
00068 const int maxIters = iters;
00069 iters = 0;
00070
00071 const int m = mat.rows();
00072
00073 VectorType p0 = rhs - mat*x;
00074 VectorType r0 = precond.solve(p0);
00075
00076
00077 if(abs(r0.norm()) < tol) {
00078 return true;
00079 }
00080
00081 VectorType w = VectorType::Zero(restart + 1);
00082
00083 FMatrixType H = FMatrixType::Zero(m, restart + 1);
00084 VectorType tau = VectorType::Zero(restart + 1);
00085 std::vector < JacobiRotation < Scalar > > G(restart);
00086
00087
00088 VectorType e(m-1);
00089 RealScalar beta;
00090 r0.makeHouseholder(e, tau.coeffRef(0), beta);
00091 w(0)=(Scalar) beta;
00092 H.bottomLeftCorner(m - 1, 1) = e;
00093
00094 for (int k = 1; k <= restart; ++k) {
00095
00096 ++iters;
00097
00098 VectorType v = VectorType::Unit(m, k - 1), workspace(m);
00099
00100
00101 for (int i = k - 1; i >= 0; --i) {
00102 v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
00103 }
00104
00105
00106 VectorType t=mat*v;
00107 v=precond.solve(t);
00108
00109
00110 for (int i = 0; i < k; ++i) {
00111 v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
00112 }
00113
00114 if (v.tail(m - k).norm() != 0.0) {
00115
00116 if (k <= restart) {
00117
00118
00119 VectorType e(m - k - 1);
00120 RealScalar beta;
00121 v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
00122 H.col(k).tail(m - k - 1) = e;
00123
00124
00125 v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
00126
00127 }
00128 }
00129
00130 if (k > 1) {
00131 for (int i = 0; i < k - 1; ++i) {
00132
00133 v.applyOnTheLeft(i, i + 1, G[i].adjoint());
00134 }
00135 }
00136
00137 if (k<m && v(k) != (Scalar) 0) {
00138
00139 G[k - 1].makeGivens(v(k - 1), v(k));
00140
00141
00142 v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
00143 w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
00144
00145 }
00146
00147
00148 H.col(k - 1).head(k) = v.head(k);
00149
00150 bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
00151
00152 if (stop || k == restart) {
00153
00154
00155 VectorType y = w.head(k);
00156 H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
00157
00158
00159 VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
00160
00161
00162 x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
00163
00164 for (int i = k - 2; i >= 0; --i) {
00165 x_new += y(i) * VectorType::Unit(m, i);
00166
00167 x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
00168 }
00169
00170 x += x_new;
00171
00172 if (stop) {
00173 return true;
00174 } else {
00175 k=0;
00176
00177
00178 VectorType p0=mat*x;
00179 VectorType p1=precond.solve(p0);
00180 r0 = rhs - p1;
00181
00182 w = VectorType::Zero(restart + 1);
00183 H = FMatrixType::Zero(m, restart + 1);
00184 tau = VectorType::Zero(restart + 1);
00185
00186
00187 RealScalar beta;
00188 r0.makeHouseholder(e, tau.coeffRef(0), beta);
00189 w(0)=(Scalar) beta;
00190 H.bottomLeftCorner(m - 1, 1) = e;
00191
00192 }
00193
00194 }
00195
00196
00197
00198 }
00199
00200 return false;
00201
00202 }
00203
00204 }
00205
00206 template< typename _MatrixType,
00207 typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
00208 class GMRES;
00209
00210 namespace internal {
00211
00212 template< typename _MatrixType, typename _Preconditioner>
00213 struct traits<GMRES<_MatrixType,_Preconditioner> >
00214 {
00215 typedef _MatrixType MatrixType;
00216 typedef _Preconditioner Preconditioner;
00217 };
00218
00219 }
00220
00253 template< typename _MatrixType, typename _Preconditioner>
00254 class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
00255 {
00256 typedef IterativeSolverBase<GMRES> Base;
00257 using Base::mp_matrix;
00258 using Base::m_error;
00259 using Base::m_iterations;
00260 using Base::m_info;
00261 using Base::m_isInitialized;
00262
00263 private:
00264 int m_restart;
00265
00266 public:
00267 typedef _MatrixType MatrixType;
00268 typedef typename MatrixType::Scalar Scalar;
00269 typedef typename MatrixType::Index Index;
00270 typedef typename MatrixType::RealScalar RealScalar;
00271 typedef _Preconditioner Preconditioner;
00272
00273 public:
00274
00276 GMRES() : Base(), m_restart(30) {}
00277
00288 GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
00289
00290 ~GMRES() {}
00291
00294 int get_restart() { return m_restart; }
00295
00299 void set_restart(const int restart) { m_restart=restart; }
00300
00306 template<typename Rhs,typename Guess>
00307 inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
00308 solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
00309 {
00310 eigen_assert(m_isInitialized && "GMRES is not initialized.");
00311 eigen_assert(Base::rows()==b.rows()
00312 && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
00313 return internal::solve_retval_with_guess
00314 <GMRES, Rhs, Guess>(*this, b.derived(), x0);
00315 }
00316
00318 template<typename Rhs,typename Dest>
00319 void _solveWithGuess(const Rhs& b, Dest& x) const
00320 {
00321 bool failed = false;
00322 for(int j=0; j<b.cols(); ++j)
00323 {
00324 m_iterations = Base::maxIterations();
00325 m_error = Base::m_tolerance;
00326
00327 typename Dest::ColXpr xj(x,j);
00328 if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
00329 failed = true;
00330 }
00331 m_info = failed ? NumericalIssue
00332 : m_error <= Base::m_tolerance ? Success
00333 : NoConvergence;
00334 m_isInitialized = true;
00335 }
00336
00338 template<typename Rhs,typename Dest>
00339 void _solve(const Rhs& b, Dest& x) const
00340 {
00341 x = b;
00342 if(x.squaredNorm() == 0) return;
00343 _solveWithGuess(b,x);
00344 }
00345
00346 protected:
00347
00348 };
00349
00350
00351 namespace internal {
00352
00353 template<typename _MatrixType, typename _Preconditioner, typename Rhs>
00354 struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
00355 : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
00356 {
00357 typedef GMRES<_MatrixType, _Preconditioner> Dec;
00358 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00359
00360 template<typename Dest> void evalTo(Dest& dst) const
00361 {
00362 dec()._solve(rhs(),dst);
00363 }
00364 };
00365
00366 }
00367
00368 }
00369
00370 #endif // EIGEN_GMRES_H