00001 #include "network.h"
00002 #include "detection_layer.h"
00003 #include "cost_layer.h"
00004 #include "utils.h"
00005 #include "parser.h"
00006 #include "box.h"
00007 #include "demo.h"
00008
00009 #ifdef OPENCV
00010 #include "opencv2/highgui/highgui_c.h"
00011 #endif
00012
00013 char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
00014
00015 void train_yolo(char *cfgfile, char *weightfile)
00016 {
00017 char *train_images = "/data/voc/train.txt";
00018 char *backup_directory = "/home/pjreddie/backup/";
00019 srand(time(0));
00020 char *base = basecfg(cfgfile);
00021 printf("%s\n", base);
00022 float avg_loss = -1;
00023 network net = parse_network_cfg(cfgfile);
00024 if(weightfile){
00025 load_weights(&net, weightfile);
00026 }
00027 printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
00028 int imgs = net.batch*net.subdivisions;
00029 int i = *net.seen/imgs;
00030 data train, buffer;
00031
00032
00033 layer l = net.layers[net.n - 1];
00034
00035 int side = l.side;
00036 int classes = l.classes;
00037 float jitter = l.jitter;
00038
00039 list *plist = get_paths(train_images);
00040
00041 char **paths = (char **)list_to_array(plist);
00042
00043 load_args args = {0};
00044 args.w = net.w;
00045 args.h = net.h;
00046 args.paths = paths;
00047 args.n = imgs;
00048 args.m = plist->size;
00049 args.classes = classes;
00050 args.jitter = jitter;
00051 args.num_boxes = side;
00052 args.d = &buffer;
00053 args.type = REGION_DATA;
00054
00055 args.angle = net.angle;
00056 args.exposure = net.exposure;
00057 args.saturation = net.saturation;
00058 args.hue = net.hue;
00059
00060 pthread_t load_thread = load_data_in_thread(args);
00061 clock_t time;
00062
00063 while(get_current_batch(net) < net.max_batches){
00064 i += 1;
00065 time=clock();
00066 pthread_join(load_thread, 0);
00067 train = buffer;
00068 load_thread = load_data_in_thread(args);
00069
00070 printf("Loaded: %lf seconds\n", sec(clock()-time));
00071
00072 time=clock();
00073 float loss = train_network(net, train);
00074 if (avg_loss < 0) avg_loss = loss;
00075 avg_loss = avg_loss*.9 + loss*.1;
00076
00077 printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
00078 if(i%1000==0 || (i < 1000 && i%100 == 0)){
00079 char buff[256];
00080 sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
00081 save_weights(net, buff);
00082 }
00083 free_data(train);
00084 }
00085 char buff[256];
00086 sprintf(buff, "%s/%s_final.weights", backup_directory, base);
00087 save_weights(net, buff);
00088 }
00089
00090 void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
00091 {
00092 int i, j;
00093 for(i = 0; i < total; ++i){
00094 float xmin = boxes[i].x - boxes[i].w/2.;
00095 float xmax = boxes[i].x + boxes[i].w/2.;
00096 float ymin = boxes[i].y - boxes[i].h/2.;
00097 float ymax = boxes[i].y + boxes[i].h/2.;
00098
00099 if (xmin < 0) xmin = 0;
00100 if (ymin < 0) ymin = 0;
00101 if (xmax > w) xmax = w;
00102 if (ymax > h) ymax = h;
00103
00104 for(j = 0; j < classes; ++j){
00105 if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
00106 xmin, ymin, xmax, ymax);
00107 }
00108 }
00109 }
00110
00111 void validate_yolo(char *cfgfile, char *weightfile)
00112 {
00113 network net = parse_network_cfg(cfgfile);
00114 if(weightfile){
00115 load_weights(&net, weightfile);
00116 }
00117 set_batch_network(&net, 1);
00118 fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
00119 srand(time(0));
00120
00121 char *base = "results/comp4_det_test_";
00122
00123 list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt");
00124
00125 char **paths = (char **)list_to_array(plist);
00126
00127 layer l = net.layers[net.n-1];
00128 int classes = l.classes;
00129
00130 int j;
00131 FILE **fps = calloc(classes, sizeof(FILE *));
00132 for(j = 0; j < classes; ++j){
00133 char buff[1024];
00134 snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
00135 fps[j] = fopen(buff, "w");
00136 }
00137 box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
00138 float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
00139 for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
00140
00141 int m = plist->size;
00142 int i=0;
00143 int t;
00144
00145 float thresh = .001;
00146 int nms = 1;
00147 float iou_thresh = .5;
00148
00149 int nthreads = 8;
00150 image *val = calloc(nthreads, sizeof(image));
00151 image *val_resized = calloc(nthreads, sizeof(image));
00152 image *buf = calloc(nthreads, sizeof(image));
00153 image *buf_resized = calloc(nthreads, sizeof(image));
00154 pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
00155
00156 load_args args = {0};
00157 args.w = net.w;
00158 args.h = net.h;
00159 args.type = IMAGE_DATA;
00160
00161 for(t = 0; t < nthreads; ++t){
00162 args.path = paths[i+t];
00163 args.im = &buf[t];
00164 args.resized = &buf_resized[t];
00165 thr[t] = load_data_in_thread(args);
00166 }
00167 time_t start = time(0);
00168 for(i = nthreads; i < m+nthreads; i += nthreads){
00169 fprintf(stderr, "%d\n", i);
00170 for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
00171 pthread_join(thr[t], 0);
00172 val[t] = buf[t];
00173 val_resized[t] = buf_resized[t];
00174 }
00175 for(t = 0; t < nthreads && i+t < m; ++t){
00176 args.path = paths[i+t];
00177 args.im = &buf[t];
00178 args.resized = &buf_resized[t];
00179 thr[t] = load_data_in_thread(args);
00180 }
00181 for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
00182 char *path = paths[i+t-nthreads];
00183 char *id = basecfg(path);
00184 float *X = val_resized[t].data;
00185 network_predict(net, X);
00186 int w = val[t].w;
00187 int h = val[t].h;
00188 get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
00189 if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, classes, iou_thresh);
00190 print_yolo_detections(fps, id, boxes, probs, l.side*l.side*l.n, classes, w, h);
00191 free(id);
00192 free_image(val[t]);
00193 free_image(val_resized[t]);
00194 }
00195 }
00196 fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
00197 }
00198
00199 void validate_yolo_recall(char *cfgfile, char *weightfile)
00200 {
00201 network net = parse_network_cfg(cfgfile);
00202 if(weightfile){
00203 load_weights(&net, weightfile);
00204 }
00205 set_batch_network(&net, 1);
00206 fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
00207 srand(time(0));
00208
00209 char *base = "results/comp4_det_test_";
00210 list *plist = get_paths("data/voc.2007.test");
00211 char **paths = (char **)list_to_array(plist);
00212
00213 layer l = net.layers[net.n-1];
00214 int classes = l.classes;
00215 int side = l.side;
00216
00217 int j, k;
00218 FILE **fps = calloc(classes, sizeof(FILE *));
00219 for(j = 0; j < classes; ++j){
00220 char buff[1024];
00221 snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
00222 fps[j] = fopen(buff, "w");
00223 }
00224 box *boxes = calloc(side*side*l.n, sizeof(box));
00225 float **probs = calloc(side*side*l.n, sizeof(float *));
00226 for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
00227
00228 int m = plist->size;
00229 int i=0;
00230
00231 float thresh = .001;
00232 float iou_thresh = .5;
00233 float nms = 0;
00234
00235 int total = 0;
00236 int correct = 0;
00237 int proposals = 0;
00238 float avg_iou = 0;
00239
00240 for(i = 0; i < m; ++i){
00241 char *path = paths[i];
00242 image orig = load_image_color(path, 0, 0);
00243 image sized = resize_image(orig, net.w, net.h);
00244 char *id = basecfg(path);
00245 network_predict(net, sized.data);
00246 get_detection_boxes(l, orig.w, orig.h, thresh, probs, boxes, 1);
00247 if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
00248
00249 char labelpath[4096];
00250 find_replace(path, "images", "labels", labelpath);
00251 find_replace(labelpath, "JPEGImages", "labels", labelpath);
00252 find_replace(labelpath, ".jpg", ".txt", labelpath);
00253 find_replace(labelpath, ".JPEG", ".txt", labelpath);
00254
00255 int num_labels = 0;
00256 box_label *truth = read_boxes(labelpath, &num_labels);
00257 for(k = 0; k < side*side*l.n; ++k){
00258 if(probs[k][0] > thresh){
00259 ++proposals;
00260 }
00261 }
00262 for (j = 0; j < num_labels; ++j) {
00263 ++total;
00264 box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
00265 float best_iou = 0;
00266 for(k = 0; k < side*side*l.n; ++k){
00267 float iou = box_iou(boxes[k], t);
00268 if(probs[k][0] > thresh && iou > best_iou){
00269 best_iou = iou;
00270 }
00271 }
00272 avg_iou += best_iou;
00273 if(best_iou > iou_thresh){
00274 ++correct;
00275 }
00276 }
00277
00278 fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
00279 free(id);
00280 free_image(orig);
00281 free_image(sized);
00282 }
00283 }
00284
00285 void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
00286 {
00287 image **alphabet = load_alphabet();
00288 network net = parse_network_cfg(cfgfile);
00289 if(weightfile){
00290 load_weights(&net, weightfile);
00291 }
00292 detection_layer l = net.layers[net.n-1];
00293 set_batch_network(&net, 1);
00294 srand(2222222);
00295 clock_t time;
00296 char buff[256];
00297 char *input = buff;
00298 int j;
00299 float nms=.4;
00300 box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
00301 float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
00302 for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
00303 while(1){
00304 if(filename){
00305 strncpy(input, filename, 256);
00306 } else {
00307 printf("Enter Image Path: ");
00308 fflush(stdout);
00309 input = fgets(input, 256, stdin);
00310 if(!input) return;
00311 strtok(input, "\n");
00312 }
00313 image im = load_image_color(input,0,0);
00314 image sized = resize_image(im, net.w, net.h);
00315 float *X = sized.data;
00316 time=clock();
00317 network_predict(net, X);
00318 printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
00319 get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
00320 if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
00321
00322 draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
00323 save_image(im, "predictions");
00324 show_image(im, "predictions");
00325
00326 free_image(im);
00327 free_image(sized);
00328 #ifdef OPENCV
00329 cvWaitKey(0);
00330 cvDestroyAllWindows();
00331 #endif
00332 if (filename) break;
00333 }
00334 }
00335
00336 void run_yolo(int argc, char **argv)
00337 {
00338 char *prefix = find_char_arg(argc, argv, "-prefix", 0);
00339 float thresh = find_float_arg(argc, argv, "-thresh", .2);
00340 int cam_index = find_int_arg(argc, argv, "-c", 0);
00341 int frame_skip = find_int_arg(argc, argv, "-s", 0);
00342 if(argc < 4){
00343 fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
00344 return;
00345 }
00346
00347 char *cfg = argv[3];
00348 char *weights = (argc > 4) ? argv[4] : 0;
00349 char *filename = (argc > 5) ? argv[5]: 0;
00350 if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh);
00351 else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
00352 else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
00353 else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights);
00354 else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, voc_names, 20, frame_skip, prefix);
00355 }