00001 #include "rnn_layer.h"
00002 #include "connected_layer.h"
00003 #include "utils.h"
00004 #include "cuda.h"
00005 #include "blas.h"
00006 #include "gemm.h"
00007
00008 #include <math.h>
00009 #include <stdio.h>
00010 #include <stdlib.h>
00011 #include <string.h>
00012
00013 static void increment_layer(layer *l, int steps)
00014 {
00015 int num = l->outputs*l->batch*steps;
00016 l->output += num;
00017 l->delta += num;
00018 l->x += num;
00019 l->x_norm += num;
00020
00021 #ifdef GPU
00022 l->output_gpu += num;
00023 l->delta_gpu += num;
00024 l->x_gpu += num;
00025 l->x_norm_gpu += num;
00026 #endif
00027 }
00028
00029 layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log)
00030 {
00031 fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs);
00032 batch = batch / steps;
00033 layer l = {0};
00034 l.batch = batch;
00035 l.type = RNN;
00036 l.steps = steps;
00037 l.hidden = hidden;
00038 l.inputs = inputs;
00039
00040 l.state = calloc(batch*hidden*(steps+1), sizeof(float));
00041
00042 l.input_layer = malloc(sizeof(layer));
00043 fprintf(stderr, "\t\t");
00044 *(l.input_layer) = make_connected_layer(batch*steps, inputs, hidden, activation, batch_normalize);
00045 l.input_layer->batch = batch;
00046
00047 l.self_layer = malloc(sizeof(layer));
00048 fprintf(stderr, "\t\t");
00049 *(l.self_layer) = make_connected_layer(batch*steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize);
00050 l.self_layer->batch = batch;
00051
00052 l.output_layer = malloc(sizeof(layer));
00053 fprintf(stderr, "\t\t");
00054 *(l.output_layer) = make_connected_layer(batch*steps, hidden, outputs, activation, batch_normalize);
00055 l.output_layer->batch = batch;
00056
00057 l.outputs = outputs;
00058 l.output = l.output_layer->output;
00059 l.delta = l.output_layer->delta;
00060
00061 l.forward = forward_rnn_layer;
00062 l.backward = backward_rnn_layer;
00063 l.update = update_rnn_layer;
00064 #ifdef GPU
00065 l.forward_gpu = forward_rnn_layer_gpu;
00066 l.backward_gpu = backward_rnn_layer_gpu;
00067 l.update_gpu = update_rnn_layer_gpu;
00068 l.state_gpu = cuda_make_array(l.state, batch*hidden*(steps+1));
00069 l.output_gpu = l.output_layer->output_gpu;
00070 l.delta_gpu = l.output_layer->delta_gpu;
00071 #endif
00072
00073 return l;
00074 }
00075
00076 void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
00077 {
00078 update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
00079 update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
00080 update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
00081 }
00082
00083 void forward_rnn_layer(layer l, network_state state)
00084 {
00085 network_state s = {0};
00086 s.train = state.train;
00087 int i;
00088 layer input_layer = *(l.input_layer);
00089 layer self_layer = *(l.self_layer);
00090 layer output_layer = *(l.output_layer);
00091
00092 fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1);
00093 fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1);
00094 fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1);
00095 if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1);
00096
00097 for (i = 0; i < l.steps; ++i) {
00098 s.input = state.input;
00099 forward_connected_layer(input_layer, s);
00100
00101 s.input = l.state;
00102 forward_connected_layer(self_layer, s);
00103
00104 float *old_state = l.state;
00105 if(state.train) l.state += l.hidden*l.batch;
00106 if(l.shortcut){
00107 copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1);
00108 }else{
00109 fill_cpu(l.hidden * l.batch, 0, l.state, 1);
00110 }
00111 axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1);
00112 axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
00113
00114 s.input = l.state;
00115 forward_connected_layer(output_layer, s);
00116
00117 state.input += l.inputs*l.batch;
00118 increment_layer(&input_layer, 1);
00119 increment_layer(&self_layer, 1);
00120 increment_layer(&output_layer, 1);
00121 }
00122 }
00123
00124 void backward_rnn_layer(layer l, network_state state)
00125 {
00126 network_state s = {0};
00127 s.train = state.train;
00128 int i;
00129 layer input_layer = *(l.input_layer);
00130 layer self_layer = *(l.self_layer);
00131 layer output_layer = *(l.output_layer);
00132
00133 increment_layer(&input_layer, l.steps-1);
00134 increment_layer(&self_layer, l.steps-1);
00135 increment_layer(&output_layer, l.steps-1);
00136
00137 l.state += l.hidden*l.batch*l.steps;
00138 for (i = l.steps-1; i >= 0; --i) {
00139 copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
00140 axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
00141
00142 s.input = l.state;
00143 s.delta = self_layer.delta;
00144 backward_connected_layer(output_layer, s);
00145
00146 l.state -= l.hidden*l.batch;
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156 s.input = l.state;
00157 s.delta = self_layer.delta - l.hidden*l.batch;
00158 if (i == 0) s.delta = 0;
00159 backward_connected_layer(self_layer, s);
00160
00161 copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1);
00162 if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1);
00163 s.input = state.input + i*l.inputs*l.batch;
00164 if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
00165 else s.delta = 0;
00166 backward_connected_layer(input_layer, s);
00167
00168 increment_layer(&input_layer, -1);
00169 increment_layer(&self_layer, -1);
00170 increment_layer(&output_layer, -1);
00171 }
00172 }
00173
00174 #ifdef GPU
00175
00176 void pull_rnn_layer(layer l)
00177 {
00178 pull_connected_layer(*(l.input_layer));
00179 pull_connected_layer(*(l.self_layer));
00180 pull_connected_layer(*(l.output_layer));
00181 }
00182
00183 void push_rnn_layer(layer l)
00184 {
00185 push_connected_layer(*(l.input_layer));
00186 push_connected_layer(*(l.self_layer));
00187 push_connected_layer(*(l.output_layer));
00188 }
00189
00190 void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
00191 {
00192 update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay);
00193 update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay);
00194 update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay);
00195 }
00196
00197 void forward_rnn_layer_gpu(layer l, network_state state)
00198 {
00199 network_state s = {0};
00200 s.train = state.train;
00201 int i;
00202 layer input_layer = *(l.input_layer);
00203 layer self_layer = *(l.self_layer);
00204 layer output_layer = *(l.output_layer);
00205
00206 fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1);
00207 fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1);
00208 fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1);
00209 if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
00210
00211 for (i = 0; i < l.steps; ++i) {
00212 s.input = state.input;
00213 forward_connected_layer_gpu(input_layer, s);
00214
00215 s.input = l.state_gpu;
00216 forward_connected_layer_gpu(self_layer, s);
00217
00218 float *old_state = l.state_gpu;
00219 if(state.train) l.state_gpu += l.hidden*l.batch;
00220 if(l.shortcut){
00221 copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1);
00222 }else{
00223 fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
00224 }
00225 axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1);
00226 axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
00227
00228 s.input = l.state_gpu;
00229 forward_connected_layer_gpu(output_layer, s);
00230
00231 state.input += l.inputs*l.batch;
00232 increment_layer(&input_layer, 1);
00233 increment_layer(&self_layer, 1);
00234 increment_layer(&output_layer, 1);
00235 }
00236 }
00237
00238 void backward_rnn_layer_gpu(layer l, network_state state)
00239 {
00240 network_state s = {0};
00241 s.train = state.train;
00242 int i;
00243 layer input_layer = *(l.input_layer);
00244 layer self_layer = *(l.self_layer);
00245 layer output_layer = *(l.output_layer);
00246 increment_layer(&input_layer, l.steps - 1);
00247 increment_layer(&self_layer, l.steps - 1);
00248 increment_layer(&output_layer, l.steps - 1);
00249 l.state_gpu += l.hidden*l.batch*l.steps;
00250 for (i = l.steps-1; i >= 0; --i) {
00251
00252 s.input = l.state_gpu;
00253 s.delta = self_layer.delta_gpu;
00254 backward_connected_layer_gpu(output_layer, s);
00255
00256 l.state_gpu -= l.hidden*l.batch;
00257
00258 copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
00259
00260 s.input = l.state_gpu;
00261 s.delta = self_layer.delta_gpu - l.hidden*l.batch;
00262 if (i == 0) s.delta = 0;
00263 backward_connected_layer_gpu(self_layer, s);
00264
00265
00266 if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1);
00267 s.input = state.input + i*l.inputs*l.batch;
00268 if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
00269 else s.delta = 0;
00270 backward_connected_layer_gpu(input_layer, s);
00271
00272 increment_layer(&input_layer, -1);
00273 increment_layer(&self_layer, -1);
00274 increment_layer(&output_layer, -1);
00275 }
00276 }
00277 #endif