parser.c
Go to the documentation of this file.
00001 #include <stdio.h>
00002 #include <string.h>
00003 #include <stdlib.h>
00004 
00005 #include "activation_layer.h"
00006 #include "activations.h"
00007 #include "assert.h"
00008 #include "avgpool_layer.h"
00009 #include "batchnorm_layer.h"
00010 #include "blas.h"
00011 #include "connected_layer.h"
00012 #include "convolutional_layer.h"
00013 #include "cost_layer.h"
00014 #include "crnn_layer.h"
00015 #include "crop_layer.h"
00016 #include "detection_layer.h"
00017 #include "dropout_layer.h"
00018 #include "gru_layer.h"
00019 #include "list.h"
00020 #include "local_layer.h"
00021 #include "maxpool_layer.h"
00022 #include "normalization_layer.h"
00023 #include "option_list.h"
00024 #include "parser.h"
00025 #include "region_layer.h"
00026 #include "reorg_layer.h"
00027 #include "rnn_layer.h"
00028 #include "route_layer.h"
00029 #include "shortcut_layer.h"
00030 #include "softmax_layer.h"
00031 #include "utils.h"
00032 
00033 typedef struct{
00034     char *type;
00035     list *options;
00036 }section;
00037 
00038 list *read_cfg(char *filename);
00039 
00040 LAYER_TYPE string_to_layer_type(char * type)
00041 {
00042 
00043     if (strcmp(type, "[shortcut]")==0) return SHORTCUT;
00044     if (strcmp(type, "[crop]")==0) return CROP;
00045     if (strcmp(type, "[cost]")==0) return COST;
00046     if (strcmp(type, "[detection]")==0) return DETECTION;
00047     if (strcmp(type, "[region]")==0) return REGION;
00048     if (strcmp(type, "[local]")==0) return LOCAL;
00049     if (strcmp(type, "[conv]")==0
00050             || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL;
00051     if (strcmp(type, "[activation]")==0) return ACTIVE;
00052     if (strcmp(type, "[net]")==0
00053             || strcmp(type, "[network]")==0) return NETWORK;
00054     if (strcmp(type, "[crnn]")==0) return CRNN;
00055     if (strcmp(type, "[gru]")==0) return GRU;
00056     if (strcmp(type, "[rnn]")==0) return RNN;
00057     if (strcmp(type, "[conn]")==0
00058             || strcmp(type, "[connected]")==0) return CONNECTED;
00059     if (strcmp(type, "[max]")==0
00060             || strcmp(type, "[maxpool]")==0) return MAXPOOL;
00061     if (strcmp(type, "[reorg]")==0) return REORG;
00062     if (strcmp(type, "[avg]")==0
00063             || strcmp(type, "[avgpool]")==0) return AVGPOOL;
00064     if (strcmp(type, "[dropout]")==0) return DROPOUT;
00065     if (strcmp(type, "[lrn]")==0
00066             || strcmp(type, "[normalization]")==0) return NORMALIZATION;
00067     if (strcmp(type, "[batchnorm]")==0) return BATCHNORM;
00068     if (strcmp(type, "[soft]")==0
00069             || strcmp(type, "[softmax]")==0) return SOFTMAX;
00070     if (strcmp(type, "[route]")==0) return ROUTE;
00071     return BLANK;
00072 }
00073 
00074 void free_section(section *s)
00075 {
00076     free(s->type);
00077     node *n = s->options->front;
00078     while(n){
00079         kvp *pair = (kvp *)n->val;
00080         free(pair->key);
00081         free(pair);
00082         node *next = n->next;
00083         free(n);
00084         n = next;
00085     }
00086     free(s->options);
00087     free(s);
00088 }
00089 
00090 void parse_data(char *data, float *a, int n)
00091 {
00092     int i;
00093     if(!data) return;
00094     char *curr = data;
00095     char *next = data;
00096     int done = 0;
00097     for(i = 0; i < n && !done; ++i){
00098         while(*++next !='\0' && *next != ',');
00099         if(*next == '\0') done = 1;
00100         *next = '\0';
00101         sscanf(curr, "%g", &a[i]);
00102         curr = next+1;
00103     }
00104 }
00105 
00106 typedef struct size_params{
00107     int batch;
00108     int inputs;
00109     int h;
00110     int w;
00111     int c;
00112     int index;
00113     int time_steps;
00114     network net;
00115 } size_params;
00116 
00117 local_layer parse_local(list *options, size_params params)
00118 {
00119     int n = option_find_int(options, "filters",1);
00120     int size = option_find_int(options, "size",1);
00121     int stride = option_find_int(options, "stride",1);
00122     int pad = option_find_int(options, "pad",0);
00123     char *activation_s = option_find_str(options, "activation", "logistic");
00124     ACTIVATION activation = get_activation(activation_s);
00125 
00126     int batch,h,w,c;
00127     h = params.h;
00128     w = params.w;
00129     c = params.c;
00130     batch=params.batch;
00131     if(!(h && w && c)) error("Layer before local layer must output image.");
00132 
00133     local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation);
00134 
00135     return layer;
00136 }
00137 
00138 convolutional_layer parse_convolutional(list *options, size_params params)
00139 {
00140     int n = option_find_int(options, "filters",1);
00141     int size = option_find_int(options, "size",1);
00142     int stride = option_find_int(options, "stride",1);
00143     int pad = option_find_int_quiet(options, "pad",0);
00144     int padding = option_find_int_quiet(options, "padding",0);
00145     if(pad) padding = size/2;
00146 
00147     char *activation_s = option_find_str(options, "activation", "logistic");
00148     ACTIVATION activation = get_activation(activation_s);
00149 
00150     int batch,h,w,c;
00151     h = params.h;
00152     w = params.w;
00153     c = params.c;
00154     batch=params.batch;
00155     if(!(h && w && c)) error("Layer before convolutional layer must output image.");
00156     int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
00157     int binary = option_find_int_quiet(options, "binary", 0);
00158     int xnor = option_find_int_quiet(options, "xnor", 0);
00159 
00160     convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor, params.net.adam);
00161     layer.flipped = option_find_int_quiet(options, "flipped", 0);
00162     layer.dot = option_find_float_quiet(options, "dot", 0);
00163     if(params.net.adam){
00164         layer.B1 = params.net.B1;
00165         layer.B2 = params.net.B2;
00166         layer.eps = params.net.eps;
00167     }
00168 
00169     return layer;
00170 }
00171 
00172 layer parse_crnn(list *options, size_params params)
00173 {
00174     int output_filters = option_find_int(options, "output_filters",1);
00175     int hidden_filters = option_find_int(options, "hidden_filters",1);
00176     char *activation_s = option_find_str(options, "activation", "logistic");
00177     ACTIVATION activation = get_activation(activation_s);
00178     int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
00179 
00180     layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize);
00181 
00182     l.shortcut = option_find_int_quiet(options, "shortcut", 0);
00183 
00184     return l;
00185 }
00186 
00187 layer parse_rnn(list *options, size_params params)
00188 {
00189     int output = option_find_int(options, "output",1);
00190     int hidden = option_find_int(options, "hidden",1);
00191     char *activation_s = option_find_str(options, "activation", "logistic");
00192     ACTIVATION activation = get_activation(activation_s);
00193     int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
00194     int logistic = option_find_int_quiet(options, "logistic", 0);
00195 
00196     layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic);
00197 
00198     l.shortcut = option_find_int_quiet(options, "shortcut", 0);
00199 
00200     return l;
00201 }
00202 
00203 layer parse_gru(list *options, size_params params)
00204 {
00205     int output = option_find_int(options, "output",1);
00206     int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
00207 
00208     layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize);
00209 
00210     return l;
00211 }
00212 
00213 connected_layer parse_connected(list *options, size_params params)
00214 {
00215     int output = option_find_int(options, "output",1);
00216     char *activation_s = option_find_str(options, "activation", "logistic");
00217     ACTIVATION activation = get_activation(activation_s);
00218     int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
00219 
00220     connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
00221 
00222     return layer;
00223 }
00224 
00225 softmax_layer parse_softmax(list *options, size_params params)
00226 {
00227     int groups = option_find_int_quiet(options, "groups",1);
00228     softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
00229     layer.temperature = option_find_float_quiet(options, "temperature", 1);
00230     char *tree_file = option_find_str(options, "tree", 0);
00231     if (tree_file) layer.softmax_tree = read_tree(tree_file);
00232     return layer;
00233 }
00234 
00235 layer parse_region(list *options, size_params params)
00236 {
00237     int coords = option_find_int(options, "coords", 4);
00238     int classes = option_find_int(options, "classes", 20);
00239     int num = option_find_int(options, "num", 1);
00240 
00241     layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords);
00242     assert(l.outputs == params.inputs);
00243 
00244     l.log = option_find_int_quiet(options, "log", 0);
00245     l.sqrt = option_find_int_quiet(options, "sqrt", 0);
00246 
00247     l.softmax = option_find_int(options, "softmax", 0);
00248     l.max_boxes = option_find_int_quiet(options, "max",30);
00249     l.jitter = option_find_float(options, "jitter", .2);
00250     l.rescore = option_find_int_quiet(options, "rescore",0);
00251 
00252     l.thresh = option_find_float(options, "thresh", .5);
00253     l.classfix = option_find_int_quiet(options, "classfix", 0);
00254     l.absolute = option_find_int_quiet(options, "absolute", 0);
00255     l.random = option_find_int_quiet(options, "random", 0);
00256 
00257     l.coord_scale = option_find_float(options, "coord_scale", 1);
00258     l.object_scale = option_find_float(options, "object_scale", 1);
00259     l.noobject_scale = option_find_float(options, "noobject_scale", 1);
00260     l.class_scale = option_find_float(options, "class_scale", 1);
00261     l.bias_match = option_find_int_quiet(options, "bias_match",0);
00262 
00263     char *tree_file = option_find_str(options, "tree", 0);
00264     if (tree_file) l.softmax_tree = read_tree(tree_file);
00265     char *map_file = option_find_str(options, "map", 0);
00266     if (map_file) l.map = read_map(map_file);
00267 
00268     char *a = option_find_str(options, "anchors", 0);
00269     if(a){
00270         int len = strlen(a);
00271         int n = 1;
00272         int i;
00273         for(i = 0; i < len; ++i){
00274             if (a[i] == ',') ++n;
00275         }
00276         for(i = 0; i < n; ++i){
00277             float bias = atof(a);
00278             l.biases[i] = bias;
00279             a = strchr(a, ',')+1;
00280         }
00281     }
00282     return l;
00283 }
00284 detection_layer parse_detection(list *options, size_params params)
00285 {
00286     int coords = option_find_int(options, "coords", 1);
00287     int classes = option_find_int(options, "classes", 1);
00288     int rescore = option_find_int(options, "rescore", 0);
00289     int num = option_find_int(options, "num", 1);
00290     int side = option_find_int(options, "side", 7);
00291     detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore);
00292 
00293     layer.softmax = option_find_int(options, "softmax", 0);
00294     layer.sqrt = option_find_int(options, "sqrt", 0);
00295 
00296     layer.max_boxes = option_find_int_quiet(options, "max",30);
00297     layer.coord_scale = option_find_float(options, "coord_scale", 1);
00298     layer.forced = option_find_int(options, "forced", 0);
00299     layer.object_scale = option_find_float(options, "object_scale", 1);
00300     layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
00301     layer.class_scale = option_find_float(options, "class_scale", 1);
00302     layer.jitter = option_find_float(options, "jitter", .2);
00303     layer.random = option_find_int_quiet(options, "random", 0);
00304     layer.reorg = option_find_int_quiet(options, "reorg", 0);
00305     return layer;
00306 }
00307 
00308 cost_layer parse_cost(list *options, size_params params)
00309 {
00310     char *type_s = option_find_str(options, "type", "sse");
00311     COST_TYPE type = get_cost_type(type_s);
00312     float scale = option_find_float_quiet(options, "scale",1);
00313     cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale);
00314     layer.ratio =  option_find_float_quiet(options, "ratio",0);
00315     return layer;
00316 }
00317 
00318 crop_layer parse_crop(list *options, size_params params)
00319 {
00320     int crop_height = option_find_int(options, "crop_height",1);
00321     int crop_width = option_find_int(options, "crop_width",1);
00322     int flip = option_find_int(options, "flip",0);
00323     float angle = option_find_float(options, "angle",0);
00324     float saturation = option_find_float(options, "saturation",1);
00325     float exposure = option_find_float(options, "exposure",1);
00326 
00327     int batch,h,w,c;
00328     h = params.h;
00329     w = params.w;
00330     c = params.c;
00331     batch=params.batch;
00332     if(!(h && w && c)) error("Layer before crop layer must output image.");
00333 
00334     int noadjust = option_find_int_quiet(options, "noadjust",0);
00335 
00336     crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
00337     l.shift = option_find_float(options, "shift", 0);
00338     l.noadjust = noadjust;
00339     return l;
00340 }
00341 
00342 layer parse_reorg(list *options, size_params params)
00343 {
00344     int stride = option_find_int(options, "stride",1);
00345     int reverse = option_find_int_quiet(options, "reverse",0);
00346 
00347     int batch,h,w,c;
00348     h = params.h;
00349     w = params.w;
00350     c = params.c;
00351     batch=params.batch;
00352     if(!(h && w && c)) error("Layer before reorg layer must output image.");
00353 
00354     layer layer = make_reorg_layer(batch,w,h,c,stride,reverse);
00355     return layer;
00356 }
00357 
00358 maxpool_layer parse_maxpool(list *options, size_params params)
00359 {
00360     int stride = option_find_int(options, "stride",1);
00361     int size = option_find_int(options, "size",stride);
00362     int padding = option_find_int_quiet(options, "padding", (size-1)/2);
00363 
00364     int batch,h,w,c;
00365     h = params.h;
00366     w = params.w;
00367     c = params.c;
00368     batch=params.batch;
00369     if(!(h && w && c)) error("Layer before maxpool layer must output image.");
00370 
00371     maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride,padding);
00372     return layer;
00373 }
00374 
00375 avgpool_layer parse_avgpool(list *options, size_params params)
00376 {
00377     int batch,w,h,c;
00378     w = params.w;
00379     h = params.h;
00380     c = params.c;
00381     batch=params.batch;
00382     if(!(h && w && c)) error("Layer before avgpool layer must output image.");
00383 
00384     avgpool_layer layer = make_avgpool_layer(batch,w,h,c);
00385     return layer;
00386 }
00387 
00388 dropout_layer parse_dropout(list *options, size_params params)
00389 {
00390     float probability = option_find_float(options, "probability", .5);
00391     dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability);
00392     layer.out_w = params.w;
00393     layer.out_h = params.h;
00394     layer.out_c = params.c;
00395     return layer;
00396 }
00397 
00398 layer parse_normalization(list *options, size_params params)
00399 {
00400     float alpha = option_find_float(options, "alpha", .0001);
00401     float beta =  option_find_float(options, "beta" , .75);
00402     float kappa = option_find_float(options, "kappa", 1);
00403     int size = option_find_int(options, "size", 5);
00404     layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa);
00405     return l;
00406 }
00407 
00408 layer parse_batchnorm(list *options, size_params params)
00409 {
00410     layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c);
00411     return l;
00412 }
00413 
00414 layer parse_shortcut(list *options, size_params params, network net)
00415 {
00416     char *l = option_find(options, "from");   
00417     int index = atoi(l);
00418     if(index < 0) index = params.index + index;
00419 
00420     int batch = params.batch;
00421     layer from = net.layers[index];
00422 
00423     layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c);
00424 
00425     char *activation_s = option_find_str(options, "activation", "linear");
00426     ACTIVATION activation = get_activation(activation_s);
00427     s.activation = activation;
00428     return s;
00429 }
00430 
00431 
00432 layer parse_activation(list *options, size_params params)
00433 {
00434     char *activation_s = option_find_str(options, "activation", "linear");
00435     ACTIVATION activation = get_activation(activation_s);
00436 
00437     layer l = make_activation_layer(params.batch, params.inputs, activation);
00438 
00439     l.out_h = params.h;
00440     l.out_w = params.w;
00441     l.out_c = params.c;
00442     l.h = params.h;
00443     l.w = params.w;
00444     l.c = params.c;
00445 
00446     return l;
00447 }
00448 
00449 route_layer parse_route(list *options, size_params params, network net)
00450 {
00451     char *l = option_find(options, "layers");   
00452     int len = strlen(l);
00453     if(!l) error("Route Layer must specify input layers");
00454     int n = 1;
00455     int i;
00456     for(i = 0; i < len; ++i){
00457         if (l[i] == ',') ++n;
00458     }
00459 
00460     int *layers = calloc(n, sizeof(int));
00461     int *sizes = calloc(n, sizeof(int));
00462     for(i = 0; i < n; ++i){
00463         int index = atoi(l);
00464         l = strchr(l, ',')+1;
00465         if(index < 0) index = params.index + index;
00466         layers[i] = index;
00467         sizes[i] = net.layers[index].outputs;
00468     }
00469     int batch = params.batch;
00470 
00471     route_layer layer = make_route_layer(batch, n, layers, sizes);
00472 
00473     convolutional_layer first = net.layers[layers[0]];
00474     layer.out_w = first.out_w;
00475     layer.out_h = first.out_h;
00476     layer.out_c = first.out_c;
00477     for(i = 1; i < n; ++i){
00478         int index = layers[i];
00479         convolutional_layer next = net.layers[index];
00480         if(next.out_w == first.out_w && next.out_h == first.out_h){
00481             layer.out_c += next.out_c;
00482         }else{
00483             layer.out_h = layer.out_w = layer.out_c = 0;
00484         }
00485     }
00486 
00487     return layer;
00488 }
00489 
00490 learning_rate_policy get_policy(char *s)
00491 {
00492     if (strcmp(s, "random")==0) return RANDOM;
00493     if (strcmp(s, "poly")==0) return POLY;
00494     if (strcmp(s, "constant")==0) return CONSTANT;
00495     if (strcmp(s, "step")==0) return STEP;
00496     if (strcmp(s, "exp")==0) return EXP;
00497     if (strcmp(s, "sigmoid")==0) return SIG;
00498     if (strcmp(s, "steps")==0) return STEPS;
00499     fprintf(stderr, "Couldn't find policy %s, going with constant\n", s);
00500     return CONSTANT;
00501 }
00502 
00503 void parse_net_options(list *options, network *net)
00504 {
00505     net->batch = option_find_int(options, "batch",1);
00506     net->learning_rate = option_find_float(options, "learning_rate", .001);
00507     net->momentum = option_find_float(options, "momentum", .9);
00508     net->decay = option_find_float(options, "decay", .0001);
00509     int subdivs = option_find_int(options, "subdivisions",1);
00510     net->time_steps = option_find_int_quiet(options, "time_steps",1);
00511     net->batch /= subdivs;
00512     net->batch *= net->time_steps;
00513     net->subdivisions = subdivs;
00514 
00515     net->adam = option_find_int_quiet(options, "adam", 0);
00516     if(net->adam){
00517         net->B1 = option_find_float(options, "B1", .9);
00518         net->B2 = option_find_float(options, "B2", .999);
00519         net->eps = option_find_float(options, "eps", .000001);
00520     }
00521 
00522     net->h = option_find_int_quiet(options, "height",0);
00523     net->w = option_find_int_quiet(options, "width",0);
00524     net->c = option_find_int_quiet(options, "channels",0);
00525     net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
00526     net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2);
00527     net->min_crop = option_find_int_quiet(options, "min_crop",net->w);
00528 
00529     net->angle = option_find_float_quiet(options, "angle", 0);
00530     net->aspect = option_find_float_quiet(options, "aspect", 1);
00531     net->saturation = option_find_float_quiet(options, "saturation", 1);
00532     net->exposure = option_find_float_quiet(options, "exposure", 1);
00533     net->hue = option_find_float_quiet(options, "hue", 0);
00534 
00535     if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
00536 
00537     char *policy_s = option_find_str(options, "policy", "constant");
00538     net->policy = get_policy(policy_s);
00539     net->burn_in = option_find_int_quiet(options, "burn_in", 0);
00540     if(net->policy == STEP){
00541         net->step = option_find_int(options, "step", 1);
00542         net->scale = option_find_float(options, "scale", 1);
00543     } else if (net->policy == STEPS){
00544         char *l = option_find(options, "steps");   
00545         char *p = option_find(options, "scales");   
00546         if(!l || !p) error("STEPS policy must have steps and scales in cfg file");
00547 
00548         int len = strlen(l);
00549         int n = 1;
00550         int i;
00551         for(i = 0; i < len; ++i){
00552             if (l[i] == ',') ++n;
00553         }
00554         int *steps = calloc(n, sizeof(int));
00555         float *scales = calloc(n, sizeof(float));
00556         for(i = 0; i < n; ++i){
00557             int step    = atoi(l);
00558             float scale = atof(p);
00559             l = strchr(l, ',')+1;
00560             p = strchr(p, ',')+1;
00561             steps[i] = step;
00562             scales[i] = scale;
00563         }
00564         net->scales = scales;
00565         net->steps = steps;
00566         net->num_steps = n;
00567     } else if (net->policy == EXP){
00568         net->gamma = option_find_float(options, "gamma", 1);
00569     } else if (net->policy == SIG){
00570         net->gamma = option_find_float(options, "gamma", 1);
00571         net->step = option_find_int(options, "step", 1);
00572     } else if (net->policy == POLY || net->policy == RANDOM){
00573         net->power = option_find_float(options, "power", 1);
00574     }
00575     net->max_batches = option_find_int(options, "max_batches", 0);
00576 }
00577 
00578 int is_network(section *s)
00579 {
00580     return (strcmp(s->type, "[net]")==0
00581             || strcmp(s->type, "[network]")==0);
00582 }
00583 
00584 network parse_network_cfg(char *filename)
00585 {
00586     list *sections = read_cfg(filename);
00587     node *n = sections->front;
00588     if(!n) error("Config file has no sections");
00589     network net = make_network(sections->size - 1);
00590     net.gpu_index = gpu_index;
00591     size_params params;
00592 
00593     section *s = (section *)n->val;
00594     list *options = s->options;
00595     if(!is_network(s)) error("First section must be [net] or [network]");
00596     parse_net_options(options, &net);
00597 
00598     params.h = net.h;
00599     params.w = net.w;
00600     params.c = net.c;
00601     params.inputs = net.inputs;
00602     params.batch = net.batch;
00603     params.time_steps = net.time_steps;
00604     params.net = net;
00605 
00606     size_t workspace_size = 0;
00607     n = n->next;
00608     int count = 0;
00609     free_section(s);
00610     fprintf(stderr, "layer     filters    size              input                output\n");
00611     while(n){
00612         params.index = count;
00613         fprintf(stderr, "%5d ", count);
00614         s = (section *)n->val;
00615         options = s->options;
00616         layer l = {0};
00617         LAYER_TYPE lt = string_to_layer_type(s->type);
00618         if(lt == CONVOLUTIONAL){
00619             l = parse_convolutional(options, params);
00620         }else if(lt == LOCAL){
00621             l = parse_local(options, params);
00622         }else if(lt == ACTIVE){
00623             l = parse_activation(options, params);
00624         }else if(lt == RNN){
00625             l = parse_rnn(options, params);
00626         }else if(lt == GRU){
00627             l = parse_gru(options, params);
00628         }else if(lt == CRNN){
00629             l = parse_crnn(options, params);
00630         }else if(lt == CONNECTED){
00631             l = parse_connected(options, params);
00632         }else if(lt == CROP){
00633             l = parse_crop(options, params);
00634         }else if(lt == COST){
00635             l = parse_cost(options, params);
00636         }else if(lt == REGION){
00637             l = parse_region(options, params);
00638         }else if(lt == DETECTION){
00639             l = parse_detection(options, params);
00640         }else if(lt == SOFTMAX){
00641             l = parse_softmax(options, params);
00642             net.hierarchy = l.softmax_tree;
00643         }else if(lt == NORMALIZATION){
00644             l = parse_normalization(options, params);
00645         }else if(lt == BATCHNORM){
00646             l = parse_batchnorm(options, params);
00647         }else if(lt == MAXPOOL){
00648             l = parse_maxpool(options, params);
00649         }else if(lt == REORG){
00650             l = parse_reorg(options, params);
00651         }else if(lt == AVGPOOL){
00652             l = parse_avgpool(options, params);
00653         }else if(lt == ROUTE){
00654             l = parse_route(options, params, net);
00655         }else if(lt == SHORTCUT){
00656             l = parse_shortcut(options, params, net);
00657         }else if(lt == DROPOUT){
00658             l = parse_dropout(options, params);
00659             l.output = net.layers[count-1].output;
00660             l.delta = net.layers[count-1].delta;
00661 #ifdef GPU
00662             l.output_gpu = net.layers[count-1].output_gpu;
00663             l.delta_gpu = net.layers[count-1].delta_gpu;
00664 #endif
00665         }else{
00666             fprintf(stderr, "Type not recognized: %s\n", s->type);
00667         }
00668         l.dontload = option_find_int_quiet(options, "dontload", 0);
00669         l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
00670         option_unused(options);
00671         net.layers[count] = l;
00672         if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
00673         free_section(s);
00674         n = n->next;
00675         ++count;
00676         if(n){
00677             params.h = l.out_h;
00678             params.w = l.out_w;
00679             params.c = l.out_c;
00680             params.inputs = l.outputs;
00681         }
00682     }   
00683     free_list(sections);
00684     net.outputs = get_network_output_size(net);
00685     net.output = get_network_output(net);
00686     if(workspace_size){
00687         //printf("%ld\n", workspace_size);
00688 #ifdef GPU
00689         if(gpu_index >= 0){
00690             net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
00691         }else {
00692             net.workspace = calloc(1, workspace_size);
00693         }
00694 #else
00695         net.workspace = calloc(1, workspace_size);
00696 #endif
00697     }
00698     return net;
00699 }
00700 
00701 list *read_cfg(char *filename)
00702 {
00703     FILE *file = fopen(filename, "r");
00704     if(file == 0) file_error(filename);
00705     char *line;
00706     int nu = 0;
00707     list *sections = make_list();
00708     section *current = 0;
00709     while((line=fgetl(file)) != 0){
00710         ++ nu;
00711         strip(line);
00712         switch(line[0]){
00713             case '[':
00714                 current = malloc(sizeof(section));
00715                 list_insert(sections, current);
00716                 current->options = make_list();
00717                 current->type = line;
00718                 break;
00719             case '\0':
00720             case '#':
00721             case ';':
00722                 free(line);
00723                 break;
00724             default:
00725                 if(!read_option(line, current->options)){
00726                     fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
00727                     free(line);
00728                 }
00729                 break;
00730         }
00731     }
00732     fclose(file);
00733     return sections;
00734 }
00735 
00736 void save_convolutional_weights_binary(layer l, FILE *fp)
00737 {
00738 #ifdef GPU
00739     if(gpu_index >= 0){
00740         pull_convolutional_layer(l);
00741     }
00742 #endif
00743     binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
00744     int size = l.c*l.size*l.size;
00745     int i, j, k;
00746     fwrite(l.biases, sizeof(float), l.n, fp);
00747     if (l.batch_normalize){
00748         fwrite(l.scales, sizeof(float), l.n, fp);
00749         fwrite(l.rolling_mean, sizeof(float), l.n, fp);
00750         fwrite(l.rolling_variance, sizeof(float), l.n, fp);
00751     }
00752     for(i = 0; i < l.n; ++i){
00753         float mean = l.binary_weights[i*size];
00754         if(mean < 0) mean = -mean;
00755         fwrite(&mean, sizeof(float), 1, fp);
00756         for(j = 0; j < size/8; ++j){
00757             int index = i*size + j*8;
00758             unsigned char c = 0;
00759             for(k = 0; k < 8; ++k){
00760                 if (j*8 + k >= size) break;
00761                 if (l.binary_weights[index + k] > 0) c = (c | 1<<k);
00762             }
00763             fwrite(&c, sizeof(char), 1, fp);
00764         }
00765     }
00766 }
00767 
00768 void save_convolutional_weights(layer l, FILE *fp)
00769 {
00770     if(l.binary){
00771         //save_convolutional_weights_binary(l, fp);
00772         //return;
00773     }
00774 #ifdef GPU
00775     if(gpu_index >= 0){
00776         pull_convolutional_layer(l);
00777     }
00778 #endif
00779     int num = l.n*l.c*l.size*l.size;
00780     fwrite(l.biases, sizeof(float), l.n, fp);
00781     if (l.batch_normalize){
00782         fwrite(l.scales, sizeof(float), l.n, fp);
00783         fwrite(l.rolling_mean, sizeof(float), l.n, fp);
00784         fwrite(l.rolling_variance, sizeof(float), l.n, fp);
00785     }
00786     fwrite(l.weights, sizeof(float), num, fp);
00787     if(l.adam){
00788         fwrite(l.m, sizeof(float), num, fp);
00789         fwrite(l.v, sizeof(float), num, fp);
00790     }
00791 }
00792 
00793 void save_batchnorm_weights(layer l, FILE *fp)
00794 {
00795 #ifdef GPU
00796     if(gpu_index >= 0){
00797         pull_batchnorm_layer(l);
00798     }
00799 #endif
00800     fwrite(l.scales, sizeof(float), l.c, fp);
00801     fwrite(l.rolling_mean, sizeof(float), l.c, fp);
00802     fwrite(l.rolling_variance, sizeof(float), l.c, fp);
00803 }
00804 
00805 void save_connected_weights(layer l, FILE *fp)
00806 {
00807 #ifdef GPU
00808     if(gpu_index >= 0){
00809         pull_connected_layer(l);
00810     }
00811 #endif
00812     fwrite(l.biases, sizeof(float), l.outputs, fp);
00813     fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
00814     if (l.batch_normalize){
00815         fwrite(l.scales, sizeof(float), l.outputs, fp);
00816         fwrite(l.rolling_mean, sizeof(float), l.outputs, fp);
00817         fwrite(l.rolling_variance, sizeof(float), l.outputs, fp);
00818     }
00819 }
00820 
00821 void save_weights_upto(network net, char *filename, int cutoff)
00822 {
00823 #ifdef GPU
00824     if(net.gpu_index >= 0){
00825         cuda_set_device(net.gpu_index);
00826     }
00827 #endif
00828     fprintf(stderr, "Saving weights to %s\n", filename);
00829     FILE *fp = fopen(filename, "w");
00830     if(!fp) file_error(filename);
00831 
00832     int major = 0;
00833     int minor = 1;
00834     int revision = 0;
00835     fwrite(&major, sizeof(int), 1, fp);
00836     fwrite(&minor, sizeof(int), 1, fp);
00837     fwrite(&revision, sizeof(int), 1, fp);
00838     fwrite(net.seen, sizeof(int), 1, fp);
00839 
00840     int i;
00841     for(i = 0; i < net.n && i < cutoff; ++i){
00842         layer l = net.layers[i];
00843         if(l.type == CONVOLUTIONAL){
00844             save_convolutional_weights(l, fp);
00845         } if(l.type == CONNECTED){
00846             save_connected_weights(l, fp);
00847         } if(l.type == BATCHNORM){
00848             save_batchnorm_weights(l, fp);
00849         } if(l.type == RNN){
00850             save_connected_weights(*(l.input_layer), fp);
00851             save_connected_weights(*(l.self_layer), fp);
00852             save_connected_weights(*(l.output_layer), fp);
00853         } if(l.type == GRU){
00854             save_connected_weights(*(l.input_z_layer), fp);
00855             save_connected_weights(*(l.input_r_layer), fp);
00856             save_connected_weights(*(l.input_h_layer), fp);
00857             save_connected_weights(*(l.state_z_layer), fp);
00858             save_connected_weights(*(l.state_r_layer), fp);
00859             save_connected_weights(*(l.state_h_layer), fp);
00860         } if(l.type == CRNN){
00861             save_convolutional_weights(*(l.input_layer), fp);
00862             save_convolutional_weights(*(l.self_layer), fp);
00863             save_convolutional_weights(*(l.output_layer), fp);
00864         } if(l.type == LOCAL){
00865 #ifdef GPU
00866             if(gpu_index >= 0){
00867                 pull_local_layer(l);
00868             }
00869 #endif
00870             int locations = l.out_w*l.out_h;
00871             int size = l.size*l.size*l.c*l.n*locations;
00872             fwrite(l.biases, sizeof(float), l.outputs, fp);
00873             fwrite(l.weights, sizeof(float), size, fp);
00874         }
00875     }
00876     fclose(fp);
00877 }
00878 void save_weights(network net, char *filename)
00879 {
00880     save_weights_upto(net, filename, net.n);
00881 }
00882 
00883 void transpose_matrix(float *a, int rows, int cols)
00884 {
00885     float *transpose = calloc(rows*cols, sizeof(float));
00886     int x, y;
00887     for(x = 0; x < rows; ++x){
00888         for(y = 0; y < cols; ++y){
00889             transpose[y*rows + x] = a[x*cols + y];
00890         }
00891     }
00892     memcpy(a, transpose, rows*cols*sizeof(float));
00893     free(transpose);
00894 }
00895 
00896 void load_connected_weights(layer l, FILE *fp, int transpose)
00897 {
00898     fread(l.biases, sizeof(float), l.outputs, fp);
00899     fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
00900     if(transpose){
00901         transpose_matrix(l.weights, l.inputs, l.outputs);
00902     }
00903     //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs));
00904     //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs));
00905     if (l.batch_normalize && (!l.dontloadscales)){
00906         fread(l.scales, sizeof(float), l.outputs, fp);
00907         fread(l.rolling_mean, sizeof(float), l.outputs, fp);
00908         fread(l.rolling_variance, sizeof(float), l.outputs, fp);
00909         //printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs));
00910         //printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs));
00911         //printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs));
00912     }
00913 #ifdef GPU
00914     if(gpu_index >= 0){
00915         push_connected_layer(l);
00916     }
00917 #endif
00918 }
00919 
00920 void load_batchnorm_weights(layer l, FILE *fp)
00921 {
00922     fread(l.scales, sizeof(float), l.c, fp);
00923     fread(l.rolling_mean, sizeof(float), l.c, fp);
00924     fread(l.rolling_variance, sizeof(float), l.c, fp);
00925 #ifdef GPU
00926     if(gpu_index >= 0){
00927         push_batchnorm_layer(l);
00928     }
00929 #endif
00930 }
00931 
00932 void load_convolutional_weights_binary(layer l, FILE *fp)
00933 {
00934     fread(l.biases, sizeof(float), l.n, fp);
00935     if (l.batch_normalize && (!l.dontloadscales)){
00936         fread(l.scales, sizeof(float), l.n, fp);
00937         fread(l.rolling_mean, sizeof(float), l.n, fp);
00938         fread(l.rolling_variance, sizeof(float), l.n, fp);
00939     }
00940     int size = l.c*l.size*l.size;
00941     int i, j, k;
00942     for(i = 0; i < l.n; ++i){
00943         float mean = 0;
00944         fread(&mean, sizeof(float), 1, fp);
00945         for(j = 0; j < size/8; ++j){
00946             int index = i*size + j*8;
00947             unsigned char c = 0;
00948             fread(&c, sizeof(char), 1, fp);
00949             for(k = 0; k < 8; ++k){
00950                 if (j*8 + k >= size) break;
00951                 l.weights[index + k] = (c & 1<<k) ? mean : -mean;
00952             }
00953         }
00954     }
00955 #ifdef GPU
00956     if(gpu_index >= 0){
00957         push_convolutional_layer(l);
00958     }
00959 #endif
00960 }
00961 
00962 void load_convolutional_weights(layer l, FILE *fp)
00963 {
00964     if(l.binary){
00965         //load_convolutional_weights_binary(l, fp);
00966         //return;
00967     }
00968     int num = l.n*l.c*l.size*l.size;
00969     if(0){
00970         fread(l.biases + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
00971         if (l.batch_normalize && (!l.dontloadscales)){
00972             fread(l.scales + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
00973             fread(l.rolling_mean + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
00974             fread(l.rolling_variance + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
00975         }
00976         fread(l.weights + ((l.n != 1374)?0:5*l.c*l.size*l.size), sizeof(float), num, fp);
00977     }else{
00978         fread(l.biases, sizeof(float), l.n, fp);
00979         if (l.batch_normalize && (!l.dontloadscales)){
00980             fread(l.scales, sizeof(float), l.n, fp);
00981             fread(l.rolling_mean, sizeof(float), l.n, fp);
00982             fread(l.rolling_variance, sizeof(float), l.n, fp);
00983         }
00984         fread(l.weights, sizeof(float), num, fp);
00985     }
00986     if(l.adam){
00987         fread(l.m, sizeof(float), num, fp);
00988         fread(l.v, sizeof(float), num, fp);
00989     }
00990     //if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1);
00991     if (l.flipped) {
00992         transpose_matrix(l.weights, l.c*l.size*l.size, l.n);
00993     }
00994     //if (l.binary) binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.weights);
00995 #ifdef GPU
00996     if(gpu_index >= 0){
00997         push_convolutional_layer(l);
00998     }
00999 #endif
01000 }
01001 
01002 
01003 void load_weights_upto(network *net, char *filename, int cutoff)
01004 {
01005 #ifdef GPU
01006     if(net->gpu_index >= 0){
01007         cuda_set_device(net->gpu_index);
01008     }
01009 #endif
01010     //fprintf(stderr, "Loading weights from %s...", filename);
01011     fflush(stdout);
01012     FILE *fp = fopen(filename, "rb");
01013     if(!fp) file_error(filename);
01014 
01015     int major;
01016     int minor;
01017     int revision;
01018     fread(&major, sizeof(int), 1, fp);
01019     fread(&minor, sizeof(int), 1, fp);
01020     fread(&revision, sizeof(int), 1, fp);
01021     fread(net->seen, sizeof(int), 1, fp);
01022     int transpose = (major > 1000) || (minor > 1000);
01023 
01024     int i;
01025     for(i = 0; i < net->n && i < cutoff; ++i){
01026         layer l = net->layers[i];
01027         if (l.dontload) continue;
01028         if(l.type == CONVOLUTIONAL){
01029             load_convolutional_weights(l, fp);
01030         }
01031         if(l.type == CONNECTED){
01032             load_connected_weights(l, fp, transpose);
01033         }
01034         if(l.type == BATCHNORM){
01035             load_batchnorm_weights(l, fp);
01036         }
01037         if(l.type == CRNN){
01038             load_convolutional_weights(*(l.input_layer), fp);
01039             load_convolutional_weights(*(l.self_layer), fp);
01040             load_convolutional_weights(*(l.output_layer), fp);
01041         }
01042         if(l.type == RNN){
01043             load_connected_weights(*(l.input_layer), fp, transpose);
01044             load_connected_weights(*(l.self_layer), fp, transpose);
01045             load_connected_weights(*(l.output_layer), fp, transpose);
01046         }
01047         if(l.type == GRU){
01048             load_connected_weights(*(l.input_z_layer), fp, transpose);
01049             load_connected_weights(*(l.input_r_layer), fp, transpose);
01050             load_connected_weights(*(l.input_h_layer), fp, transpose);
01051             load_connected_weights(*(l.state_z_layer), fp, transpose);
01052             load_connected_weights(*(l.state_r_layer), fp, transpose);
01053             load_connected_weights(*(l.state_h_layer), fp, transpose);
01054         }
01055         if(l.type == LOCAL){
01056             int locations = l.out_w*l.out_h;
01057             int size = l.size*l.size*l.c*l.n*locations;
01058             fread(l.biases, sizeof(float), l.outputs, fp);
01059             fread(l.weights, sizeof(float), size, fp);
01060 #ifdef GPU
01061             if(gpu_index >= 0){
01062                 push_local_layer(l);
01063             }
01064 #endif
01065         }
01066     }
01067     //fprintf(stderr, "Done!\n");
01068     fclose(fp);
01069 }
01070 
01071 void load_weights(network *net, char *filename)
01072 {
01073     load_weights_upto(net, filename, net->n);
01074 }
01075 


rail_object_detector
Author(s):
autogenerated on Sat Jun 8 2019 20:26:30