deconvolutional_layer.c
Go to the documentation of this file.
00001 #include "deconvolutional_layer.h"
00002 #include "convolutional_layer.h"
00003 #include "utils.h"
00004 #include "im2col.h"
00005 #include "col2im.h"
00006 #include "blas.h"
00007 #include "gemm.h"
00008 #include <stdio.h>
00009 #include <time.h>
00010 
00011 int deconvolutional_out_height(deconvolutional_layer l)
00012 {
00013     int h = l.stride*(l.h - 1) + l.size;
00014     return h;
00015 }
00016 
00017 int deconvolutional_out_width(deconvolutional_layer l)
00018 {
00019     int w = l.stride*(l.w - 1) + l.size;
00020     return w;
00021 }
00022 
00023 int deconvolutional_out_size(deconvolutional_layer l)
00024 {
00025     return deconvolutional_out_height(l) * deconvolutional_out_width(l);
00026 }
00027 
00028 image get_deconvolutional_image(deconvolutional_layer l)
00029 {
00030     int h,w,c;
00031     h = deconvolutional_out_height(l);
00032     w = deconvolutional_out_width(l);
00033     c = l.n;
00034     return float_to_image(w,h,c,l.output);
00035 }
00036 
00037 image get_deconvolutional_delta(deconvolutional_layer l)
00038 {
00039     int h,w,c;
00040     h = deconvolutional_out_height(l);
00041     w = deconvolutional_out_width(l);
00042     c = l.n;
00043     return float_to_image(w,h,c,l.delta);
00044 }
00045 
00046 deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
00047 {
00048     int i;
00049     deconvolutional_layer l = {0};
00050     l.type = DECONVOLUTIONAL;
00051 
00052     l.h = h;
00053     l.w = w;
00054     l.c = c;
00055     l.n = n;
00056     l.batch = batch;
00057     l.stride = stride;
00058     l.size = size;
00059 
00060     l.weights = calloc(c*n*size*size, sizeof(float));
00061     l.weight_updates = calloc(c*n*size*size, sizeof(float));
00062 
00063     l.biases = calloc(n, sizeof(float));
00064     l.bias_updates = calloc(n, sizeof(float));
00065     float scale = 1./sqrt(size*size*c);
00066     for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_normal();
00067     for(i = 0; i < n; ++i){
00068         l.biases[i] = scale;
00069     }
00070     int out_h = deconvolutional_out_height(l);
00071     int out_w = deconvolutional_out_width(l);
00072 
00073     l.out_h = out_h;
00074     l.out_w = out_w;
00075     l.out_c = n;
00076     l.outputs = l.out_w * l.out_h * l.out_c;
00077     l.inputs = l.w * l.h * l.c;
00078 
00079     l.col_image = calloc(h*w*size*size*n, sizeof(float));
00080     l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
00081     l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
00082 
00083     l.forward = forward_deconvolutional_layer;
00084     l.backward = backward_deconvolutional_layer;
00085     l.update = update_deconvolutional_layer;
00086 
00087     #ifdef GPU
00088     l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
00089     l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
00090 
00091     l.biases_gpu = cuda_make_array(l.biases, n);
00092     l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
00093 
00094     l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n);
00095     l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
00096     l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
00097     #endif
00098 
00099     l.activation = activation;
00100 
00101     fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
00102 
00103     return l;
00104 }
00105 
00106 void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w)
00107 {
00108     l->h = h;
00109     l->w = w;
00110     int out_h = deconvolutional_out_height(*l);
00111     int out_w = deconvolutional_out_width(*l);
00112 
00113     l->col_image = realloc(l->col_image,
00114                                 out_h*out_w*l->size*l->size*l->c*sizeof(float));
00115     l->output = realloc(l->output,
00116                                 l->batch*out_h * out_w * l->n*sizeof(float));
00117     l->delta  = realloc(l->delta,
00118                                 l->batch*out_h * out_w * l->n*sizeof(float));
00119     #ifdef GPU
00120     cuda_free(l->col_image_gpu);
00121     cuda_free(l->delta_gpu);
00122     cuda_free(l->output_gpu);
00123 
00124     l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
00125     l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
00126     l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
00127     #endif
00128 }
00129 
00130 void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state)
00131 {
00132     int i;
00133     int out_h = deconvolutional_out_height(l);
00134     int out_w = deconvolutional_out_width(l);
00135     int size = out_h*out_w;
00136 
00137     int m = l.size*l.size*l.n;
00138     int n = l.h*l.w;
00139     int k = l.c;
00140 
00141     fill_cpu(l.outputs*l.batch, 0, l.output, 1);
00142 
00143     for(i = 0; i < l.batch; ++i){
00144         float *a = l.weights;
00145         float *b = state.input + i*l.c*l.h*l.w;
00146         float *c = l.col_image;
00147 
00148         gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
00149 
00150         col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size);
00151     }
00152     add_bias(l.output, l.biases, l.batch, l.n, size);
00153     activate_array(l.output, l.batch*l.n*size, l.activation);
00154 }
00155 
00156 void backward_deconvolutional_layer(deconvolutional_layer l, network_state state)
00157 {
00158     float alpha = 1./l.batch;
00159     int out_h = deconvolutional_out_height(l);
00160     int out_w = deconvolutional_out_width(l);
00161     int size = out_h*out_w;
00162     int i;
00163 
00164     gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta);
00165     backward_bias(l.bias_updates, l.delta, l.batch, l.n, size);
00166 
00167     for(i = 0; i < l.batch; ++i){
00168         int m = l.c;
00169         int n = l.size*l.size*l.n;
00170         int k = l.h*l.w;
00171 
00172         float *a = state.input + i*m*n;
00173         float *b = l.col_image;
00174         float *c = l.weight_updates;
00175 
00176         im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w, 
00177                 l.size, l.stride, 0, b);
00178         gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
00179 
00180         if(state.delta){
00181             int m = l.c;
00182             int n = l.h*l.w;
00183             int k = l.size*l.size*l.n;
00184 
00185             float *a = l.weights;
00186             float *b = l.col_image;
00187             float *c = state.delta + i*n*m;
00188 
00189             gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
00190         }
00191     }
00192 }
00193 
00194 void update_deconvolutional_layer(deconvolutional_layer l, float learning_rate, float momentum, float decay)
00195 {
00196     int size = l.size*l.size*l.c*l.n;
00197     axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1);
00198     scal_cpu(l.n, momentum, l.bias_updates, 1);
00199 
00200     axpy_cpu(size, -decay, l.weights, 1, l.weight_updates, 1);
00201     axpy_cpu(size, learning_rate, l.weight_updates, 1, l.weights, 1);
00202     scal_cpu(size, momentum, l.weight_updates, 1);
00203 }
00204 
00205 
00206 


rail_object_detector
Author(s):
autogenerated on Sat Jun 8 2019 20:26:29