00001 #include <stdio.h>
00002
00003 #include "network.h"
00004 #include "detection_layer.h"
00005 #include "cost_layer.h"
00006 #include "utils.h"
00007 #include "parser.h"
00008 #include "box.h"
00009 #include "demo.h"
00010
00011 #ifdef OPENCV
00012 #include "opencv2/highgui/highgui_c.h"
00013 #endif
00014
00015 char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
00016
00017 int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
00018
00019 void train_coco(char *cfgfile, char *weightfile)
00020 {
00021
00022
00023 char *train_images = "data/coco.trainval.txt";
00024
00025 char *backup_directory = "/home/pjreddie/backup/";
00026 srand(time(0));
00027 char *base = basecfg(cfgfile);
00028 printf("%s\n", base);
00029 float avg_loss = -1;
00030 network net = parse_network_cfg(cfgfile);
00031 if(weightfile){
00032 load_weights(&net, weightfile);
00033 }
00034 printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
00035 int imgs = net.batch*net.subdivisions;
00036 int i = *net.seen/imgs;
00037 data train, buffer;
00038
00039
00040 layer l = net.layers[net.n - 1];
00041
00042 int side = l.side;
00043 int classes = l.classes;
00044 float jitter = l.jitter;
00045
00046 list *plist = get_paths(train_images);
00047
00048 char **paths = (char **)list_to_array(plist);
00049
00050 load_args args = {0};
00051 args.w = net.w;
00052 args.h = net.h;
00053 args.paths = paths;
00054 args.n = imgs;
00055 args.m = plist->size;
00056 args.classes = classes;
00057 args.jitter = jitter;
00058 args.num_boxes = side;
00059 args.d = &buffer;
00060 args.type = REGION_DATA;
00061
00062 args.angle = net.angle;
00063 args.exposure = net.exposure;
00064 args.saturation = net.saturation;
00065 args.hue = net.hue;
00066
00067 pthread_t load_thread = load_data_in_thread(args);
00068 clock_t time;
00069
00070 while(get_current_batch(net) < net.max_batches){
00071 i += 1;
00072 time=clock();
00073 pthread_join(load_thread, 0);
00074 train = buffer;
00075 load_thread = load_data_in_thread(args);
00076
00077 printf("Loaded: %lf seconds\n", sec(clock()-time));
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087 time=clock();
00088 float loss = train_network(net, train);
00089 if (avg_loss < 0) avg_loss = loss;
00090 avg_loss = avg_loss*.9 + loss*.1;
00091
00092 printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
00093 if(i%1000==0 || (i < 1000 && i%100 == 0)){
00094 char buff[256];
00095 sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
00096 save_weights(net, buff);
00097 }
00098 if(i%100==0){
00099 char buff[256];
00100 sprintf(buff, "%s/%s.backup", backup_directory, base);
00101 save_weights(net, buff);
00102 }
00103 free_data(train);
00104 }
00105 char buff[256];
00106 sprintf(buff, "%s/%s_final.weights", backup_directory, base);
00107 save_weights(net, buff);
00108 }
00109
00110 void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
00111 {
00112 int i, j;
00113 for(i = 0; i < num_boxes; ++i){
00114 float xmin = boxes[i].x - boxes[i].w/2.;
00115 float xmax = boxes[i].x + boxes[i].w/2.;
00116 float ymin = boxes[i].y - boxes[i].h/2.;
00117 float ymax = boxes[i].y + boxes[i].h/2.;
00118
00119 if (xmin < 0) xmin = 0;
00120 if (ymin < 0) ymin = 0;
00121 if (xmax > w) xmax = w;
00122 if (ymax > h) ymax = h;
00123
00124 float bx = xmin;
00125 float by = ymin;
00126 float bw = xmax - xmin;
00127 float bh = ymax - ymin;
00128
00129 for(j = 0; j < classes; ++j){
00130 if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
00131 }
00132 }
00133 }
00134
00135 int get_coco_image_id(char *filename)
00136 {
00137 char *p = strrchr(filename, '_');
00138 return atoi(p+1);
00139 }
00140
00141 void validate_coco(char *cfgfile, char *weightfile)
00142 {
00143 network net = parse_network_cfg(cfgfile);
00144 if(weightfile){
00145 load_weights(&net, weightfile);
00146 }
00147 set_batch_network(&net, 1);
00148 fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
00149 srand(time(0));
00150
00151 char *base = "results/";
00152 list *plist = get_paths("data/coco_val_5k.list");
00153
00154
00155 char **paths = (char **)list_to_array(plist);
00156
00157 layer l = net.layers[net.n-1];
00158 int classes = l.classes;
00159 int side = l.side;
00160
00161 int j;
00162 char buff[1024];
00163 snprintf(buff, 1024, "%s/coco_results.json", base);
00164 FILE *fp = fopen(buff, "w");
00165 fprintf(fp, "[\n");
00166
00167 box *boxes = calloc(side*side*l.n, sizeof(box));
00168 float **probs = calloc(side*side*l.n, sizeof(float *));
00169 for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
00170
00171 int m = plist->size;
00172 int i=0;
00173 int t;
00174
00175 float thresh = .01;
00176 int nms = 1;
00177 float iou_thresh = .5;
00178
00179 int nthreads = 8;
00180 image *val = calloc(nthreads, sizeof(image));
00181 image *val_resized = calloc(nthreads, sizeof(image));
00182 image *buf = calloc(nthreads, sizeof(image));
00183 image *buf_resized = calloc(nthreads, sizeof(image));
00184 pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
00185
00186 load_args args = {0};
00187 args.w = net.w;
00188 args.h = net.h;
00189 args.type = IMAGE_DATA;
00190
00191 for(t = 0; t < nthreads; ++t){
00192 args.path = paths[i+t];
00193 args.im = &buf[t];
00194 args.resized = &buf_resized[t];
00195 thr[t] = load_data_in_thread(args);
00196 }
00197 time_t start = time(0);
00198 for(i = nthreads; i < m+nthreads; i += nthreads){
00199 fprintf(stderr, "%d\n", i);
00200 for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
00201 pthread_join(thr[t], 0);
00202 val[t] = buf[t];
00203 val_resized[t] = buf_resized[t];
00204 }
00205 for(t = 0; t < nthreads && i+t < m; ++t){
00206 args.path = paths[i+t];
00207 args.im = &buf[t];
00208 args.resized = &buf_resized[t];
00209 thr[t] = load_data_in_thread(args);
00210 }
00211 for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
00212 char *path = paths[i+t-nthreads];
00213 int image_id = get_coco_image_id(path);
00214 float *X = val_resized[t].data;
00215 network_predict(net, X);
00216 int w = val[t].w;
00217 int h = val[t].h;
00218 get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
00219 if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
00220 print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
00221 free_image(val[t]);
00222 free_image(val_resized[t]);
00223 }
00224 }
00225 fseek(fp, -2, SEEK_CUR);
00226 fprintf(fp, "\n]\n");
00227 fclose(fp);
00228
00229 fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
00230 }
00231
00232 void validate_coco_recall(char *cfgfile, char *weightfile)
00233 {
00234 network net = parse_network_cfg(cfgfile);
00235 if(weightfile){
00236 load_weights(&net, weightfile);
00237 }
00238 set_batch_network(&net, 1);
00239 fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
00240 srand(time(0));
00241
00242 char *base = "results/comp4_det_test_";
00243 list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
00244 char **paths = (char **)list_to_array(plist);
00245
00246 layer l = net.layers[net.n-1];
00247 int classes = l.classes;
00248 int side = l.side;
00249
00250 int j, k;
00251 FILE **fps = calloc(classes, sizeof(FILE *));
00252 for(j = 0; j < classes; ++j){
00253 char buff[1024];
00254 snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
00255 fps[j] = fopen(buff, "w");
00256 }
00257 box *boxes = calloc(side*side*l.n, sizeof(box));
00258 float **probs = calloc(side*side*l.n, sizeof(float *));
00259 for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
00260
00261 int m = plist->size;
00262 int i=0;
00263
00264 float thresh = .001;
00265 int nms = 0;
00266 float iou_thresh = .5;
00267 float nms_thresh = .5;
00268
00269 int total = 0;
00270 int correct = 0;
00271 int proposals = 0;
00272 float avg_iou = 0;
00273
00274 for(i = 0; i < m; ++i){
00275 char *path = paths[i];
00276 image orig = load_image_color(path, 0, 0);
00277 image sized = resize_image(orig, net.w, net.h);
00278 char *id = basecfg(path);
00279 network_predict(net, sized.data);
00280 get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1);
00281 if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
00282
00283 char labelpath[4096];
00284 find_replace(path, "images", "labels", labelpath);
00285 find_replace(labelpath, "JPEGImages", "labels", labelpath);
00286 find_replace(labelpath, ".jpg", ".txt", labelpath);
00287 find_replace(labelpath, ".JPEG", ".txt", labelpath);
00288
00289 int num_labels = 0;
00290 box_label *truth = read_boxes(labelpath, &num_labels);
00291 for(k = 0; k < side*side*l.n; ++k){
00292 if(probs[k][0] > thresh){
00293 ++proposals;
00294 }
00295 }
00296 for (j = 0; j < num_labels; ++j) {
00297 ++total;
00298 box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
00299 float best_iou = 0;
00300 for(k = 0; k < side*side*l.n; ++k){
00301 float iou = box_iou(boxes[k], t);
00302 if(probs[k][0] > thresh && iou > best_iou){
00303 best_iou = iou;
00304 }
00305 }
00306 avg_iou += best_iou;
00307 if(best_iou > iou_thresh){
00308 ++correct;
00309 }
00310 }
00311
00312 fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
00313 free(id);
00314 free_image(orig);
00315 free_image(sized);
00316 }
00317 }
00318
00319 void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
00320 {
00321 image **alphabet = load_alphabet();
00322 network net = parse_network_cfg(cfgfile);
00323 if(weightfile){
00324 load_weights(&net, weightfile);
00325 }
00326 detection_layer l = net.layers[net.n-1];
00327 set_batch_network(&net, 1);
00328 srand(2222222);
00329 float nms = .4;
00330 clock_t time;
00331 char buff[256];
00332 char *input = buff;
00333 int j;
00334 box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
00335 float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
00336 for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
00337 while(1){
00338 if(filename){
00339 strncpy(input, filename, 256);
00340 } else {
00341 printf("Enter Image Path: ");
00342 fflush(stdout);
00343 input = fgets(input, 256, stdin);
00344 if(!input) return;
00345 strtok(input, "\n");
00346 }
00347 image im = load_image_color(input,0,0);
00348 image sized = resize_image(im, net.w, net.h);
00349 float *X = sized.data;
00350 time=clock();
00351 network_predict(net, X);
00352 printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
00353 get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
00354 if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
00355 draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, alphabet, 80);
00356 save_image(im, "prediction");
00357 show_image(im, "predictions");
00358 free_image(im);
00359 free_image(sized);
00360 #ifdef OPENCV
00361 cvWaitKey(0);
00362 cvDestroyAllWindows();
00363 #endif
00364 if (filename) break;
00365 }
00366 }
00367
00368 void run_coco(int argc, char **argv)
00369 {
00370 char *prefix = find_char_arg(argc, argv, "-prefix", 0);
00371 float thresh = find_float_arg(argc, argv, "-thresh", .2);
00372 int cam_index = find_int_arg(argc, argv, "-c", 0);
00373 int frame_skip = find_int_arg(argc, argv, "-s", 0);
00374
00375 if(argc < 4){
00376 fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
00377 return;
00378 }
00379
00380 char *cfg = argv[3];
00381 char *weights = (argc > 4) ? argv[4] : 0;
00382 char *filename = (argc > 5) ? argv[5]: 0;
00383 if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh);
00384 else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
00385 else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
00386 else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
00387 else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, 80, frame_skip, prefix);
00388 }