batchnorm_layer.c
Go to the documentation of this file.
00001 #include "batchnorm_layer.h"
00002 #include "blas.h"
00003 #include <stdio.h>
00004 
00005 layer make_batchnorm_layer(int batch, int w, int h, int c)
00006 {
00007     fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c);
00008     layer layer = {0};
00009     layer.type = BATCHNORM;
00010     layer.batch = batch;
00011     layer.h = layer.out_h = h;
00012     layer.w = layer.out_w = w;
00013     layer.c = layer.out_c = c;
00014     layer.output = calloc(h * w * c * batch, sizeof(float));
00015     layer.delta  = calloc(h * w * c * batch, sizeof(float));
00016     layer.inputs = w*h*c;
00017     layer.outputs = layer.inputs;
00018 
00019     layer.scales = calloc(c, sizeof(float));
00020     layer.scale_updates = calloc(c, sizeof(float));
00021     int i;
00022     for(i = 0; i < c; ++i){
00023         layer.scales[i] = 1;
00024     }
00025 
00026     layer.mean = calloc(c, sizeof(float));
00027     layer.variance = calloc(c, sizeof(float));
00028 
00029     layer.rolling_mean = calloc(c, sizeof(float));
00030     layer.rolling_variance = calloc(c, sizeof(float));
00031 
00032     layer.forward = forward_batchnorm_layer;
00033     layer.backward = backward_batchnorm_layer;
00034 #ifdef GPU
00035     layer.forward_gpu = forward_batchnorm_layer_gpu;
00036     layer.backward_gpu = backward_batchnorm_layer_gpu;
00037 
00038     layer.output_gpu =  cuda_make_array(layer.output, h * w * c * batch);
00039     layer.delta_gpu =   cuda_make_array(layer.delta, h * w * c * batch);
00040 
00041     layer.scales_gpu = cuda_make_array(layer.scales, c);
00042     layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c);
00043 
00044     layer.mean_gpu = cuda_make_array(layer.mean, c);
00045     layer.variance_gpu = cuda_make_array(layer.variance, c);
00046 
00047     layer.rolling_mean_gpu = cuda_make_array(layer.mean, c);
00048     layer.rolling_variance_gpu = cuda_make_array(layer.variance, c);
00049 
00050     layer.mean_delta_gpu = cuda_make_array(layer.mean, c);
00051     layer.variance_delta_gpu = cuda_make_array(layer.variance, c);
00052 
00053     layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
00054     layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
00055 #endif
00056     return layer;
00057 }
00058 
00059 void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
00060 {
00061     int i,b,f;
00062     for(f = 0; f < n; ++f){
00063         float sum = 0;
00064         for(b = 0; b < batch; ++b){
00065             for(i = 0; i < size; ++i){
00066                 int index = i + size*(f + n*b);
00067                 sum += delta[index] * x_norm[index];
00068             }
00069         }
00070         scale_updates[f] += sum;
00071     }
00072 }
00073 
00074 void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
00075 {
00076 
00077     int i,j,k;
00078     for(i = 0; i < filters; ++i){
00079         mean_delta[i] = 0;
00080         for (j = 0; j < batch; ++j) {
00081             for (k = 0; k < spatial; ++k) {
00082                 int index = j*filters*spatial + i*spatial + k;
00083                 mean_delta[i] += delta[index];
00084             }
00085         }
00086         mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
00087     }
00088 }
00089 void  variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
00090 {
00091 
00092     int i,j,k;
00093     for(i = 0; i < filters; ++i){
00094         variance_delta[i] = 0;
00095         for(j = 0; j < batch; ++j){
00096             for(k = 0; k < spatial; ++k){
00097                 int index = j*filters*spatial + i*spatial + k;
00098                 variance_delta[i] += delta[index]*(x[index] - mean[i]);
00099             }
00100         }
00101         variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
00102     }
00103 }
00104 void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
00105 {
00106     int f, j, k;
00107     for(j = 0; j < batch; ++j){
00108         for(f = 0; f < filters; ++f){
00109             for(k = 0; k < spatial; ++k){
00110                 int index = j*filters*spatial + f*spatial + k;
00111                 delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
00112             }
00113         }
00114     }
00115 }
00116 
00117 void resize_batchnorm_layer(layer *layer, int w, int h)
00118 {
00119     fprintf(stderr, "Not implemented\n");
00120 }
00121 
00122 void forward_batchnorm_layer(layer l, network_state state)
00123 {
00124     if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
00125     if(l.type == CONNECTED){
00126         l.out_c = l.outputs;
00127         l.out_h = l.out_w = 1;
00128     }
00129     if(state.train){
00130         mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
00131         variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
00132 
00133         scal_cpu(l.out_c, .99, l.rolling_mean, 1);
00134         axpy_cpu(l.out_c, .01, l.mean, 1, l.rolling_mean, 1);
00135         scal_cpu(l.out_c, .99, l.rolling_variance, 1);
00136         axpy_cpu(l.out_c, .01, l.variance, 1, l.rolling_variance, 1);
00137 
00138         copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
00139         normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);   
00140         copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
00141     } else {
00142         normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
00143     }
00144     scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
00145 }
00146 
00147 void backward_batchnorm_layer(const layer l, network_state state)
00148 {
00149     backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates);
00150 
00151     scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
00152 
00153     mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta);
00154     variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta);
00155     normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
00156     if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
00157 }
00158 
00159 #ifdef GPU
00160 
00161 void pull_batchnorm_layer(layer l)
00162 {
00163     cuda_pull_array(l.scales_gpu, l.scales, l.c);
00164     cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
00165     cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
00166 }
00167 void push_batchnorm_layer(layer l)
00168 {
00169     cuda_push_array(l.scales_gpu, l.scales, l.c);
00170     cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
00171     cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
00172 }
00173 
00174 void forward_batchnorm_layer_gpu(layer l, network_state state)
00175 {
00176     if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
00177     if(l.type == CONNECTED){
00178         l.out_c = l.outputs;
00179         l.out_h = l.out_w = 1;
00180     }
00181     if (state.train) {
00182         fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
00183         fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
00184 
00185         scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
00186         axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
00187         scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
00188         axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
00189 
00190         copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
00191         normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
00192         copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
00193     } else {
00194         normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
00195     }
00196 
00197     scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
00198 }
00199 
00200 void backward_batchnorm_layer_gpu(const layer l, network_state state)
00201 {
00202     backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
00203 
00204     scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
00205 
00206     fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
00207     fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
00208     normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
00209     if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
00210 }
00211 #endif


rail_object_detector
Author(s):
autogenerated on Sat Jun 8 2019 20:26:29