Tvmet3d.cpp
Go to the documentation of this file.
00001 /*
00002  * Copyright (c) 2008, AIST, the University of Tokyo and General Robotix Inc.
00003  * All rights reserved. This program is made available under the terms of the
00004  * Eclipse Public License v1.0 which accompanies this distribution, and is
00005  * available at http://www.eclipse.org/legal/epl-v10.html
00006  * Contributors:
00007  * National Institute of Advanced Industrial Science and Technology (AIST)
00008  * General Robotix Inc. 
00009  */
00010 
00011 #include "Tvmet3d.h"
00012 
00013 using namespace tvmet;
00014 using namespace hrp;
00015 
00016 
00017 static const double PI = 3.14159265358979323846;
00018 
00019 
00020 void hrp::calcRodrigues(Matrix33& out_R, const Vector3& axis, double q)
00021 {
00022     // E + a_hat*sin(q) + a_hat*a_hat*(1-cos(q))
00023     //
00024     //    |  0 -az  ay|
00025     // =E+| az   0 -ax|*s + a_hat*a_hat*v
00026     //    |-ay  ax   0|
00027     //
00028     //    |  0 -az  ay|     |-az*az-ay*ay        ax*ay        az*ax|
00029     // =E+| az   0 -ax|*s + |       ax*ay -az*az-ax*ax        ay*az|*v
00030     //    |-ay  ax   0|     |       az*ax        ay*az -ax*ax-ay*ay|
00031     //
00032     //  |1-az*az*v-ay*ay*v     -az*s+ax*ay*v      ay*s+az*ax*v|
00033     // =|     az*s+ax*ay*v 1-az*az*v-ax*ax*v     -ax*s+ay+az*v|
00034     //  |    -ay*s+az*ax*v      ax*s+ay*az*v 1-ax*ax*v-ay*ay*v|
00035     //
00036 
00037     const double sth = sin(q);
00038     const double vth = 1.0 - cos(q);
00039 
00040     double ax = axis(0);
00041     double ay = axis(1);
00042     double az = axis(2);
00043 
00044     const double axx = ax*ax*vth;
00045     const double ayy = ay*ay*vth;
00046     const double azz = az*az*vth;
00047     const double axy = ax*ay*vth;
00048     const double ayz = ay*az*vth;
00049     const double azx = az*ax*vth;
00050 
00051     ax *= sth;
00052     ay *= sth;
00053     az *= sth;
00054 
00055     out_R = 1.0 - azz - ayy, -az + axy,       ay + azx,
00056             az + axy,        1.0 - azz - axx, -ax + ayz,
00057             -ay + azx,       ax + ayz,        1.0 - ayy - axx;
00058 }
00059 
00060 
00061 Vector3 hrp::omegaFromRot(const Matrix33& r)
00062 {
00063     using ::std::numeric_limits;
00064 
00065     double alpha = (r(0,0) + r(1,1) + r(2,2) - 1.0) / 2.0;
00066 
00067     if(fabs(alpha - 1.0) < 1.0e-6) {   //th=0,2PI;
00068         return Vector3(0.0);
00069 
00070     } else {
00071         double th = acos(alpha);
00072         double s = sin(th);
00073 
00074         if (s < numeric_limits<double>::epsilon()) {   //th=PI
00075             return Vector3( sqrt((r(0,0)+1)*0.5)*th, sqrt((r(1,1)+1)*0.5)*th, sqrt((r(2,2)+1)*0.5)*th );
00076         }
00077 
00078         double k = -0.5 * th / s;
00079 
00080         return Vector3( (r(1,2) - r(2,1)) * k,
00081                         (r(2,0) - r(0,2)) * k,
00082                         (r(0,1) - r(1,0)) * k );
00083     }
00084 }
00085 
00086 
00087 Vector3 hrp::rpyFromRot(const Matrix33& m)
00088 {
00089     double roll, pitch, yaw;
00090     
00091     if ((fabs(m(0,0))<fabs(m(2,0))) && (fabs(m(1,0))<fabs(m(2,0)))) {
00092         // cos(p) is nearly = 0
00093         double sp = -m(2,0);
00094         if (sp < -1.0) {
00095             sp = -1;
00096         } else if (sp > 1.0) {
00097             sp = 1;
00098         }
00099         pitch = asin(sp); // -pi/2< p < pi/2
00100         
00101         roll = atan2(sp*m(0,1)+m(1,2),  // -cp*cp*sr*cy
00102                      sp*m(0,2)-m(1,1)); // -cp*cp*cr*cy
00103         
00104         if (m(0,0)>0.0) { // cy > 0
00105             (roll < 0.0) ? (roll += PI) : (roll -= PI);
00106         }
00107         double sr=sin(roll), cr=cos(roll);
00108         if (sp > 0.0) {
00109             yaw = atan2(sr*m(1,1)+cr*m(1,2), //sy*sp
00110                         sr*m(0,1)+cr*m(0,2));//cy*sp
00111         } else {
00112             yaw = atan2(-sr*m(1,1)-cr*m(1,2),
00113                         -sr*m(0,1)-cr*m(0,2));
00114         }
00115     } else {
00116         yaw = atan2(m(1,0), m(0,0));
00117         const double sa = sin(yaw);
00118         const double ca = cos(yaw);
00119         pitch = atan2(-m(2,0), ca*m(0,0)+sa*m(1,0));
00120         roll = atan2(sa*m(0,2)-ca*m(1,2), -sa*m(0,1)+ca*m(1,1));
00121     }
00122     return Vector3(roll, pitch, yaw);
00123 }
00124 
00125 
00126 void hrp::calcRotFromRpy(Matrix33& out_R, double r, double p, double y)
00127 {
00128     const double cr = cos(r), sr = sin(r), cp = cos(p), sp = sin(p), cy = cos(y), sy = sin(y);
00129     out_R(0,0)= cp*cy;
00130     out_R(0,1)= sr*sp*cy - cr*sy;
00131     out_R(0,2)= cr*sp*cy + sr*sy;
00132     out_R(1,0)= cp*sy;
00133     out_R(1,1)= sr*sp*sy + cr*cy;
00134     out_R(1,2)= cr*sp*sy - sr*cy;
00135     out_R(2,0)= -sp;
00136     out_R(2,1)= sr*cp;
00137     out_R(2,2)= cr*cp;
00138 }
00139 
00140 
00141 void hrp::calcInverse(Matrix33& inv, const Matrix33& m)
00142 {
00143   double det = m(0,0)*(m(1,1)*m(2,2)-m(1,2)*m(2,1)) - m(0,1)*(m(1,0)*m(2,2)-m(1,2)*m(2,0)) + m(0,2)*(m(1,0)*m(2,1)-m(1,1)*m(2,0));
00144   
00145   if(fabs(det) < std::numeric_limits<double>::epsilon()){
00146       throw std::string("Invrse matrix cannot be calculated.");
00147   }
00148   else{
00149     inv =
00150        (m(1,1)*m(2,2)-m(1,2)*m(2,1)) / det, (m(0,2)*m(2,1)-m(0,1)*m(2,2)) / det, (m(0,1)*m(1,2)-m(0,2)*m(1,1)) / det,
00151        (m(1,2)*m(2,0)-m(1,0)*m(2,2)) / det, (m(0,0)*m(2,2)-m(0,2)*m(2,0)) / det, (m(0,2)*m(1,0)-m(0,0)*m(1,2)) / det,
00152        (m(1,0)*m(2,1)-m(1,1)*m(2,0)) / det, (m(0,1)*m(2,0)-m(0,0)*m(2,1)) / det, (m(0,0)*m(1,1)-m(0,1)*m(1,0)) / det;
00153   }
00154 }
00155 
00156 bool hrp::isOrthogonalMatrix(Matrix33& m){
00157     return all_elements( m * trans(m) == tvmet::identity<Matrix33>() );
00158 }


openhrp3
Author(s): AIST, General Robotix Inc., Nakamura Lab of Dept. of Mechano Informatics at University of Tokyo
autogenerated on Thu Apr 11 2019 03:30:19