00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035 #include "SurfaceNormal.h"
00036
00037
00038 #include "Eigen/QR"
00039 #include "Eigen/Eigenvalues"
00040
00041 #include "PointMatcherPrivate.h"
00042 #include "IO.h"
00043 #include "MatchersImpl.h"
00044
00045 #include <boost/format.hpp>
00046
00047 #include "utils.h"
00048
00049
00050
00051 template<typename T>
00052 SurfaceNormalDataPointsFilter<T>::SurfaceNormalDataPointsFilter(const Parameters& params):
00053 PointMatcher<T>::DataPointsFilter("SurfaceNormalDataPointsFilter",
00054 SurfaceNormalDataPointsFilter::availableParameters(), params),
00055 knn(Parametrizable::get<int>("knn")),
00056 maxDist(Parametrizable::get<T>("maxDist")),
00057 epsilon(Parametrizable::get<T>("epsilon")),
00058 keepNormals(Parametrizable::get<bool>("keepNormals")),
00059 keepDensities(Parametrizable::get<bool>("keepDensities")),
00060 keepEigenValues(Parametrizable::get<bool>("keepEigenValues")),
00061 keepEigenVectors(Parametrizable::get<bool>("keepEigenVectors")),
00062 keepMatchedIds(Parametrizable::get<bool>("keepMatchedIds")),
00063 keepMeanDist(Parametrizable::get<bool>("keepMeanDist")),
00064 sortEigen(Parametrizable::get<bool>("sortEigen")),
00065 smoothNormals(Parametrizable::get<bool>("smoothNormals"))
00066 {
00067 }
00068
00069
00070 template<typename T>
00071 typename PointMatcher<T>::DataPoints
00072 SurfaceNormalDataPointsFilter<T>::filter(
00073 const DataPoints& input)
00074 {
00075 DataPoints output(input);
00076 inPlaceFilter(output);
00077 return output;
00078 }
00079
00080
00081 template<typename T>
00082 void SurfaceNormalDataPointsFilter<T>::inPlaceFilter(
00083 DataPoints& cloud)
00084 {
00085 typedef typename DataPoints::View View;
00086 typedef typename DataPoints::Label Label;
00087 typedef typename DataPoints::Labels Labels;
00088 typedef typename MatchersImpl<T>::KDTreeMatcher KDTreeMatcher;
00089 typedef typename PointMatcher<T>::Matches Matches;
00090
00091 using namespace PointMatcherSupport;
00092
00093 const int pointsCount(cloud.features.cols());
00094 const int featDim(cloud.features.rows());
00095 const int descDim(cloud.descriptors.rows());
00096 const unsigned int labelDim(cloud.descriptorLabels.size());
00097
00098
00099 int insertDim(0);
00100 for(unsigned int i = 0; i < labelDim ; ++i)
00101 insertDim += cloud.descriptorLabels[i].span;
00102 if (insertDim != descDim)
00103 throw InvalidField("SurfaceNormalDataPointsFilter: Error, descriptor labels do not match descriptor data");
00104
00105
00106 const int dimNormals(featDim-1);
00107 const int dimDensities(1);
00108 const int dimEigValues(featDim-1);
00109 const int dimEigVectors((featDim-1)*(featDim-1));
00110
00111 const int dimMeanDist(1);
00112
00113 boost::optional<View> normals;
00114 boost::optional<View> densities;
00115 boost::optional<View> eigenValues;
00116 boost::optional<View> eigenVectors;
00117 boost::optional<View> matchedValues;
00118 boost::optional<View> matchIds;
00119 boost::optional<View> meanDists;
00120
00121 Labels cloudLabels;
00122 if (keepNormals)
00123 cloudLabels.push_back(Label("normals", dimNormals));
00124 if (keepDensities)
00125 cloudLabels.push_back(Label("densities", dimDensities));
00126 if (keepEigenValues)
00127 cloudLabels.push_back(Label("eigValues", dimEigValues));
00128 if (keepEigenVectors)
00129 cloudLabels.push_back(Label("eigVectors", dimEigVectors));
00130 if (keepMatchedIds)
00131 cloudLabels.push_back(Label("matchedIds", knn));
00132 if (keepMeanDist)
00133 cloudLabels.push_back(Label("meanDists", dimMeanDist));
00134
00135
00136 cloud.allocateDescriptors(cloudLabels);
00137
00138 if (keepNormals)
00139 normals = cloud.getDescriptorViewByName("normals");
00140 if (keepDensities)
00141 densities = cloud.getDescriptorViewByName("densities");
00142 if (keepEigenValues)
00143 eigenValues = cloud.getDescriptorViewByName("eigValues");
00144 if (keepEigenVectors)
00145 eigenVectors = cloud.getDescriptorViewByName("eigVectors");
00146 if (keepMatchedIds)
00147 matchIds = cloud.getDescriptorViewByName("matchedIds");
00148 if (keepMeanDist)
00149 meanDists = cloud.getDescriptorViewByName("meanDists");
00150
00151 using namespace PointMatcherSupport;
00152
00153 Parametrizable::Parameters param;
00154 boost::assign::insert(param) ( "knn", toParam(knn) );
00155 boost::assign::insert(param) ( "epsilon", toParam(epsilon) );
00156 boost::assign::insert(param) ( "maxDist", toParam(maxDist) );
00157
00158 KDTreeMatcher matcher(param);
00159 matcher.init(cloud);
00160
00161 Matches matches(typename Matches::Dists(knn, pointsCount), typename Matches::Ids(knn, pointsCount));
00162 matches = matcher.findClosests(cloud);
00163
00164
00165 int degenerateCount(0);
00166 for (int i = 0; i < pointsCount; ++i)
00167 {
00168 bool isDegenerate = false;
00169
00170 Matrix d(featDim-1, knn);
00171 int realKnn = 0;
00172
00173 for(int j = 0; j < int(knn); ++j)
00174 {
00175 if (matches.dists(j,i) != Matches::InvalidDist)
00176 {
00177 const int refIndex(matches.ids(j,i));
00178 d.col(realKnn) = cloud.features.block(0, refIndex, featDim-1, 1);
00179 ++realKnn;
00180 }
00181 }
00182 d.conservativeResize(Eigen::NoChange, realKnn);
00183
00184 const Vector mean = d.rowwise().sum() / T(realKnn);
00185 const Matrix NN = d.colwise() - mean;
00186
00187 const Matrix C(NN * NN.transpose());
00188 Vector eigenVa = Vector::Zero(featDim-1, 1);
00189 Matrix eigenVe = Matrix::Zero(featDim-1, featDim-1);
00190
00191 if(keepNormals || keepEigenValues || keepEigenVectors)
00192 {
00193 if(C.fullPivHouseholderQr().rank()+1 >= featDim-1)
00194 {
00195 const Eigen::EigenSolver<Matrix> solver(C);
00196 eigenVa = solver.eigenvalues().real();
00197 eigenVe = solver.eigenvectors().real();
00198
00199 if(sortEigen)
00200 {
00201 const std::vector<size_t> idx = sortIndexes<T>(eigenVa);
00202 const size_t idxSize = idx.size();
00203 Vector tmp_eigenVa = eigenVa;
00204 Matrix tmp_eigenVe = eigenVe;
00205 for(size_t i=0; i<idxSize; ++i)
00206 {
00207 eigenVa(i,0) = tmp_eigenVa(idx[i], 0);
00208 eigenVe.col(i) = tmp_eigenVe.col(idx[i]);
00209 }
00210 }
00211 }
00212 else
00213 {
00214
00215 ++degenerateCount;
00216 isDegenerate = true;
00217 }
00218 }
00219
00220 if(keepNormals)
00221 {
00222 if(sortEigen)
00223 normals->col(i) = eigenVe.col(0);
00224 else
00225 normals->col(i) = computeNormal<T>(eigenVa, eigenVe);
00226
00227
00228 normals->col(i) = normals->col(i).cwiseMax(-1.0).cwiseMin(1.0);
00229 }
00230 if(keepDensities)
00231 {
00232 if(isDegenerate)
00233 (*densities)(0, i) = 0.;
00234 else
00235 (*densities)(0, i) = computeDensity<T>(NN);
00236 }
00237 if(keepEigenValues)
00238 eigenValues->col(i) = eigenVa;
00239 if(keepEigenVectors)
00240 eigenVectors->col(i) = serializeEigVec<T>(eigenVe);
00241 if(keepMeanDist)
00242 {
00243 if(isDegenerate)
00244 (*meanDists)(0, i) = std::numeric_limits<std::size_t>::max();
00245 else
00246 {
00247 const Vector point = cloud.features.block(0, i, featDim-1, 1);
00248 (*meanDists)(0, i) = (point - mean).norm();
00249 }
00250 }
00251
00252 }
00253
00254 if(keepMatchedIds)
00255 {
00256 matchIds.get() = matches.ids.template cast<T>();
00257 }
00258
00259 if(smoothNormals)
00260 {
00261 for (int i = 0; i < pointsCount; ++i)
00262 {
00263 const Vector currentNormal = normals->col(i);
00264 Vector mean = Vector::Zero(featDim-1);
00265 int n=0;
00266 for(int j = 0; j < int(knn); ++j)
00267 {
00268 if (matches.dists(j,i) != Matches::InvalidDist)
00269 {
00270 const int refIndex(matches.ids(j,i));
00271 const Vector normal = normals->col(refIndex);
00272 if(currentNormal.dot(normal) > 0.)
00273 mean += normal;
00274 else
00275 mean -= normal;
00276
00277 ++n;
00278 }
00279 }
00280
00281 normals->col(i) = mean / T(n);
00282 }
00283 }
00284
00285 if (degenerateCount)
00286 {
00287 LOG_WARNING_STREAM("WARNING: Matrix C needed for eigen decomposition was degenerated in " << degenerateCount << " points over " << pointsCount << " (" << float(degenerateCount)*100.f/float(pointsCount) << " %)");
00288 }
00289
00290 }
00291
00292 template struct SurfaceNormalDataPointsFilter<float>;
00293 template struct SurfaceNormalDataPointsFilter<double>;
00294