resnet50.py
Go to the documentation of this file.
00001 # Modified work: Copyright (c) 2017 Kentaro Wada.
00002 # Original work: https://github.com/yasunorikudo/chainer-ResNet
00003 
00004 import chainer
00005 import chainer.functions as F
00006 import chainer.links as L
00007 
00008 
00009 class BottleNeckA(chainer.Chain):
00010     def __init__(self, in_size, ch, out_size, stride=2):
00011         initialW = chainer.initializers.HeNormal()
00012         super(BottleNeckA, self).__init__(
00013             conv1=L.Convolution2D(
00014                 in_size, ch, 1, stride, 0, nobias=True, initialW=initialW),
00015             bn1=L.BatchNormalization(ch),
00016             conv2=L.Convolution2D(
00017                 ch, ch, 3, 1, 1, nobias=True, initialW=initialW),
00018             bn2=L.BatchNormalization(ch),
00019             conv3=L.Convolution2D(
00020                 ch, out_size, 1, 1, 0, nobias=True, initialW=initialW),
00021             bn3=L.BatchNormalization(out_size),
00022 
00023             conv4=L.Convolution2D(
00024                 in_size, out_size, 1, stride, 0,
00025                 nobias=True, initialW=initialW),
00026             bn4=L.BatchNormalization(out_size),
00027         )
00028 
00029     def __call__(self, x):
00030         h1 = F.relu(self.bn1(self.conv1(x)))
00031         h1 = F.relu(self.bn2(self.conv2(h1)))
00032         h1 = self.bn3(self.conv3(h1))
00033         h2 = self.bn4(self.conv4(x))
00034 
00035         return F.relu(h1 + h2)
00036 
00037 
00038 class BottleNeckB(chainer.Chain):
00039     def __init__(self, in_size, ch):
00040         initialW = chainer.initializers.HeNormal()
00041         super(BottleNeckB, self).__init__(
00042             conv1=L.Convolution2D(
00043                 in_size, ch, 1, 1, 0, nobias=True, initialW=initialW),
00044             bn1=L.BatchNormalization(ch),
00045             conv2=L.Convolution2D(
00046                 ch, ch, 3, 1, 1, nobias=True, initialW=initialW),
00047             bn2=L.BatchNormalization(ch),
00048             conv3=L.Convolution2D(
00049                 ch, in_size, 1, 1, 0, nobias=True, initialW=initialW),
00050             bn3=L.BatchNormalization(in_size),
00051         )
00052 
00053     def __call__(self, x):
00054         h = F.relu(self.bn1(self.conv1(x)))
00055         h = F.relu(self.bn2(self.conv2(h)))
00056         h = self.bn3(self.conv3(h))
00057 
00058         return F.relu(h + x)
00059 
00060 
00061 class Block(chainer.Chain):
00062     def __init__(self, layer, in_size, ch, out_size, stride=2):
00063         super(Block, self).__init__()
00064         links = [('a', BottleNeckA(in_size, ch, out_size, stride))]
00065         for i in range(layer - 1):
00066             links += [('b{}'.format(i + 1), BottleNeckB(out_size, ch))]
00067 
00068         for l in links:
00069             self.add_link(*l)
00070         self.forward = links
00071 
00072     def __call__(self, x):
00073         for name, _ in self.forward:
00074             f = getattr(self, name)
00075             x = f(x)
00076 
00077         return x
00078 
00079 
00080 class ResNet50(chainer.Chain):
00081 
00082     insize = 224
00083 
00084     def __init__(self):
00085         initialW = chainer.initializers.HeNormal()
00086         super(ResNet50, self).__init__(
00087             conv1=L.Convolution2D(
00088                 3, 64, 7, 2, 3, nobias=True, initialW=initialW),
00089             bn1=L.BatchNormalization(64),
00090             res2=Block(3, 64, 64, 256, 1),
00091             res3=Block(4, 256, 128, 512),
00092             res4=Block(6, 512, 256, 1024),
00093             res5=Block(3, 1024, 512, 2048),
00094             fc=L.Linear(2048, 1000),
00095         )
00096 
00097     def clear(self):
00098         self.loss = None
00099         self.accuracy = None
00100 
00101     def __call__(self, x, t=None):
00102         self.clear()
00103         h = self.bn1(self.conv1(x))
00104         h = F.max_pooling_2d(F.relu(h), 3, stride=2)
00105         h = self.res2(h)
00106         h = self.res3(h)
00107         h = self.res4(h)
00108         h = self.res5(h)
00109         h = F.average_pooling_2d(h, 7, stride=1)
00110         h = self.fc(h)
00111 
00112         if t is None:
00113             return h
00114 
00115         self.loss = F.softmax_cross_entropy(h, t)
00116         self.accuracy = F.accuracy(h, t)
00117         return self.loss
00118 
00119 
00120 class ResNet50Feature(ResNet50):
00121 
00122     def __call__(self, x):
00123         h = self.bn1(self.conv1(x))
00124         h = F.max_pooling_2d(F.relu(h), 3, stride=2)
00125         h = self.res2(h)
00126         h = self.res3(h)
00127         h = self.res4(h)
00128         h = self.res5(h)
00129         h = F.average_pooling_2d(h, 7, stride=1)
00130         return h


jsk_recognition_utils
Author(s):
autogenerated on Tue Jul 2 2019 19:40:37