nonlinearsystempdf.cpp
Go to the documentation of this file.
00001 // $Id: nonlinearanalyticconditionalgaussianmobile.cpp 5823 2005-10-27 13:43:02Z TDeLaet $
00002 // Copyright (C) 2006  Tinne De Laet <first dot last at mech dot kuleuven dot be>
00003 //
00004 // This program is free software; you can redistribute it and/or modify
00005 // it under the terms of the GNU Lesser General Public License as published by
00006 // the Free Software Foundation; either version 2.1 of the License, or
00007 // (at your option) any later version.
00008 //
00009 // This program is distributed in the hope that it will be useful,
00010 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00011 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00012 // GNU Lesser General Public License for more details.
00013 //
00014 // You should have received a copy of the GNU Lesser General Public License
00015 // along with this program; if not, write to the Free Software
00016 // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
00017 //
00018 
00019 #include "bayesian_filtering/nonlinearsystempdf.h"
00020 #include <wrappers/rng/rng.h> // Wrapper around several rng libraries
00021 
00022 #define SYSMODEL_NUMCONDARGUMENTS_MOBILE 2
00023 #define SYSMODEL_DIMENSION_MOBILE        3
00024 
00025 namespace BFL
00026 {
00027 using namespace MatrixWrapper;
00028 
00029 NonlinearSystemPdf::NonlinearSystemPdf(const Gaussian& additiveNoise)
00030     : ConditionalPdf<ColumnVector,ColumnVector>(SYSMODEL_DIMENSION_MOBILE,SYSMODEL_NUMCONDARGUMENTS_MOBILE)
00031 {
00032     _additiveNoise = additiveNoise;
00033 }
00034 
00035 NonlinearSystemPdf::~NonlinearSystemPdf(){}
00036 
00037 bool NonlinearSystemPdf::SampleFrom(Sample<ColumnVector>& one_sample, int method, void * args) const
00038 {
00039     ColumnVector state = ConditionalArgumentGet(0);
00040     ColumnVector input  = ConditionalArgumentGet(1); // Transformation
00041 
00042 
00043     // Construct homogeneous transformation matrix
00044     Matrix T_homogeneous(4,4);
00045     //T_homogeneous=0;
00046 
00047     for(unsigned int row=1; row<=4; ++row)
00048     {
00049         for(unsigned int col=1; col<=4; ++col)
00050         {
00051             unsigned int index=col+(row-1)*4;
00052             T_homogeneous(row,col)=input(index);
00053         }
00054     }
00055 
00056     // Construct homogeneous state vector
00057     ColumnVector state_homogeneous(4);
00058     state_homogeneous=0;
00059     state_homogeneous(1)=state(1);     state_homogeneous(2)=state(2);    state_homogeneous(3)=state(3);    state_homogeneous(4)=1.0;
00060 
00061     // Apply transformation
00062     state_homogeneous=T_homogeneous * state_homogeneous;
00063 
00064     // Convert back to state coordinates
00065     state(1)=state_homogeneous(1);   state(2)=state_homogeneous(2);  state(3)=state_homogeneous(3);
00066 
00067 
00068     // sample from additive noise
00069     Sample<ColumnVector> noise;
00070     _additiveNoise.SampleFrom(noise, method, args);
00071 
00072     // store results in one_sample
00073     one_sample.ValueSet(state+noise.ValueGet());
00074 
00075 
00076     return true;
00077 }
00078 void NonlinearSystemPdf::AdditiveNoiseSigmaSet(const MatrixWrapper::SymmetricMatrix &sigma)
00079 {
00080     _additiveNoise.CovarianceSet(sigma);
00081 }
00082 
00083 
00084 }//namespace BFL
00085 


ekf_localization
Author(s):
autogenerated on Sat Jun 8 2019 20:11:55