Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019 #include "gaussian.h"
00020
00021 #include "../wrappers/rng/rng.h"
00022
00023 #include <cmath>
00024 #include <cassert>
00025
00026 namespace BFL
00027 {
00028 using namespace MatrixWrapper;
00029
00030 Gaussian::Gaussian (const ColumnVector& m, const SymmetricMatrix& s)
00031 : Pdf<ColumnVector> ( m.rows() )
00032 , _diff(DimensionGet())
00033 , _tempColumn(DimensionGet())
00034 , _samples(DimensionGet())
00035 , _sampleValue(DimensionGet())
00036 , _Low_triangle(DimensionGet(),DimensionGet())
00037 {
00038
00039 assert (m.rows() == s.columns());
00040 _Mu = m;
00041 _Sigma = s;
00042 _Sigma_inverse.resize(DimensionGet());
00043 _Sigma_changed = true;
00044 }
00045
00046 Gaussian::Gaussian (int dimension)
00047 : Pdf<ColumnVector>(dimension)
00048 , _diff(dimension)
00049 , _tempColumn(DimensionGet())
00050 , _samples(dimension)
00051 , _sampleValue(dimension)
00052 , _Low_triangle(dimension,dimension)
00053 {
00054 _Mu.resize(dimension);
00055 _Sigma.resize(dimension);
00056 _Sigma_inverse.resize(dimension);
00057 _Sigma_changed = true;
00058 }
00059
00060 Gaussian::~Gaussian(){}
00061
00062 std::ostream& operator<< (std::ostream& os, const Gaussian& g)
00063 {
00064 os << "\nMu:\n" << g.ExpectedValueGet()
00065 << "\nSigma:\n" << g.CovarianceGet() << endl;
00066 return os;
00067 }
00068
00069
00070 Gaussian* Gaussian::Clone() const
00071 {
00072 return new Gaussian(*this);
00073 }
00074
00075 Probability Gaussian::ProbabilityGet(const ColumnVector& input) const
00076 {
00077
00078 if (_Sigma_changed){
00079 _Sigma_changed = false;
00080 _Sigma_inverse = _Sigma.inverse();
00081 _sqrt_pow = 1 / sqrt(pow(M_PI*2,(double)DimensionGet()) * _Sigma.determinant());
00082 }
00083
00084 _diff = input;
00085 _diff -= _Mu;
00086 _Sigma_inverse.multiply(_diff,_tempColumn);
00087
00088 Probability temp = _diff.transpose() * _tempColumn;
00089
00090 Probability result = exp(-0.5 * temp) * _sqrt_pow;
00091 return result;
00092 }
00093
00094
00095
00096
00097 bool
00098 Gaussian::SampleFrom (vector<Sample<ColumnVector> >& list_samples, const int num_samples, int method, void * args) const
00099 {
00100 list_samples.resize(num_samples);
00101 vector<Sample<ColumnVector> >::iterator rit = list_samples.begin();
00102 switch(method)
00103 {
00104 case DEFAULT:
00105 case CHOLESKY:
00106 {
00107 bool result = _Sigma.cholesky_semidefinite(_Low_triangle);
00108 while (rit != list_samples.end())
00109 {
00110 for (unsigned int j=1; j < DimensionGet()+1; j++) _samples(j) = rnorm(0,1);
00111 _sampleValue = _Low_triangle * _samples ;
00112 _sampleValue += this->_Mu;
00113 rit->ValueSet(_sampleValue);
00114 rit++;
00115 }
00116 return result;
00117 }
00118 case BOXMULLER:
00119
00120 return false;
00121 default:
00122 return false;
00123 }
00124 }
00125
00126
00127 bool
00128 Gaussian::SampleFrom (Sample<ColumnVector>& one_sample, int method, void * args) const
00129 {
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140 switch(method)
00141 {
00142 case DEFAULT:
00143 case CHOLESKY:
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154 {
00155 bool result = _Sigma.cholesky_semidefinite(_Low_triangle);
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166 for (unsigned int j=1; j < DimensionGet()+1; j++) _samples(j) = rnorm(0,1);
00167 _sampleValue = (_Low_triangle * _samples) + this->_Mu;
00168 one_sample.ValueSet(_sampleValue);
00169 return result;
00170 }
00171 case BOXMULLER:
00172
00173 return false;
00174 default:
00175 return false;
00176 }
00177 }
00178
00179
00180 ColumnVector
00181 Gaussian::ExpectedValueGet ( ) const
00182 {
00183 return _Mu;
00184 }
00185
00186 SymmetricMatrix
00187 Gaussian::CovarianceGet () const
00188 {
00189 return _Sigma;
00190 }
00191
00192 void
00193 Gaussian::ExpectedValueSet (const ColumnVector& mu)
00194 {
00195 _Mu = mu;
00196 if (this->DimensionGet() == 0)
00197 {
00198 this->DimensionSet(mu.rows());
00199 }
00200 assert(this->DimensionGet() == mu.rows());
00201 }
00202
00203 void
00204 Gaussian::CovarianceSet (const SymmetricMatrix& cov)
00205 {
00206 _Sigma = cov;
00207 _Sigma_changed = true;
00208 if (this->DimensionGet() == 0)
00209 {
00210 this->DimensionSet(cov.rows());
00211 }
00212 assert(this->DimensionGet() == cov.rows());
00213 }
00214
00215 }
bfl
Author(s): Klaas Gadeyne, Wim Meeussen, Tinne Delaet and many others. See web page for a full contributor list. ROS package maintained by Wim Meeussen.
autogenerated on Mon Feb 11 2019 03:45:12