Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019 #include "discreteconditionalpdf.h"
00020 #include "../wrappers/rng/rng.h"
00021 #include <vector>
00022 #include <iostream>
00023
00024 namespace BFL
00025 {
00026 using namespace std;
00027
00028 DiscreteConditionalPdf::DiscreteConditionalPdf(int num_states,
00029 int num_conditional_arguments,
00030 int cond_arg_dimensions[])
00031 : ConditionalPdf<int,int>(1,num_conditional_arguments)
00032 , _num_states(num_states)
00033 , _probs(num_states)
00034 , _valuelist(num_states+1)
00035 {
00036 _cond_arg_dims_p = new int[num_conditional_arguments];
00037 int total_dim = 1;
00038 for ( int arg = 0 ; arg < num_conditional_arguments; arg++)
00039 {
00040 _cond_arg_dims_p[arg] = cond_arg_dimensions[arg];
00041 total_dim *= cond_arg_dimensions[arg];
00042 }
00043 _total_dimension = total_dim * num_states;
00044 #ifdef __CONSTRUCTOR__
00045 cout << "DCPdf Constructor: total dimension allocated: "
00046 << _total_dimension << endl;
00047 #endif // __CONSTRUCTOR__
00048 _probability_p = new double[_total_dimension];
00049 }
00050
00051 DiscreteConditionalPdf::~DiscreteConditionalPdf()
00052 {
00053 #ifdef __DCPDFDEBUG__
00054 cout << "DCPdf Destructor:" << endl;
00055 #endif // __DCPDFDEBUG__
00056
00057
00058 }
00059
00060
00061 DiscreteConditionalPdf::DiscreteConditionalPdf(const DiscreteConditionalPdf & pdf)
00062 : ConditionalPdf<int,int>(pdf)
00063 ,_num_states(pdf.NumStatesGet())
00064 , _probs(pdf.NumStatesGet())
00065 , _valuelist(pdf.NumStatesGet()+1)
00066 {
00067 _cond_arg_dims_p = new int[pdf.NumConditionalArgumentsGet()];
00068 int total_dim = 1;
00069 for ( unsigned int arg = 0 ; arg < NumConditionalArgumentsGet(); arg++)
00070 {
00071 _cond_arg_dims_p[arg] = pdf._cond_arg_dims_p[arg];
00072 total_dim *= _cond_arg_dims_p[arg];
00073 }
00074 total_dim *= _num_states;
00075 _total_dimension = total_dim;
00076 _probability_p = new double[total_dim];
00077 for (int prob = 0 ; prob < total_dim ; prob++)
00078 {
00079 _probability_p[prob] = pdf._probability_p[prob];
00080 }
00081 }
00082
00083
00084 DiscreteConditionalPdf* DiscreteConditionalPdf::Clone() const
00085 {
00086 return new DiscreteConditionalPdf(*this);
00087 }
00088
00089
00090 unsigned int DiscreteConditionalPdf::NumStatesGet() const
00091 {
00092 return _num_states;
00093 }
00094
00095
00096 int DiscreteConditionalPdf::IndexGet(const int& input,
00097 const std::vector<int>& condargs) const
00098 {
00099 int index = 0;
00100 int blocksize = 1;
00101
00102
00103 index += input * blocksize;
00104 blocksize *= NumStatesGet();
00105
00106 for (unsigned int arg = 0 ; arg < NumConditionalArgumentsGet() ; arg++ )
00107 {
00108 index += condargs[arg] * blocksize;
00109 blocksize *= (this->_cond_arg_dims_p)[arg];
00110 }
00111 #ifdef __INDEXDEBUG__
00112 cout << "DCPdf::IndexGet -> Index = " << index << endl;
00113 #endif // __INDEXDEBUG__
00114 return index;
00115 }
00116
00117
00118
00119 Probability DiscreteConditionalPdf::ProbabilityGet(const int& input) const
00120 {
00121 unsigned int index = IndexGet(input, ConditionalArgumentsGet());
00122 double prob = (this->_probability_p)[index];
00123 return prob;
00124 }
00125
00126
00127 void DiscreteConditionalPdf::ProbabilitySet(const double& prob,
00128 const int& input,
00129 const std::vector<int>& condargs) const
00130 {
00131 int index = this->IndexGet(input, condargs);
00132 _probability_p[index] = prob;
00133 }
00134
00135 bool DiscreteConditionalPdf::SampleFrom(Sample<int>& one_sample, int method, void * args) const
00136 {
00137
00138 int startindex = IndexGet(0,ConditionalArgumentsGet());
00139 double SumWeights = 0.0; double CumSum=0.0;
00140 unsigned int index;
00141
00142 for ( index = 0; index < NumStatesGet() ; index++ )
00143 {
00144 _probs[index] = _probability_p[startindex+index];
00145 CumSum += _probs[index];
00146 #ifdef __DCPDFDEBUG__
00147 #define TABWIDTH 10
00148 cout << setw(TABWIDTH) << _probs[index];
00149 #endif // __DCPDFDEBUG__
00150 }
00151 SumWeights = CumSum;
00152 _valuelist[0] = 0.0; CumSum = 0.0;
00153 for ( index = 1; index <= NumStatesGet() ; index++ )
00154 {
00155 CumSum += _probs[index-1]/SumWeights;
00156 _valuelist[index] = CumSum;
00157 }
00158
00159 assert ( (_valuelist[NumStatesGet()] >= 1.0 - NUMERIC_PRECISION) &&
00160 (_valuelist[NumStatesGet()] <= 1.0 + NUMERIC_PRECISION) );
00161
00162 _valuelist[NumStatesGet()]=1;
00163
00164
00165 double unif_sample; unif_sample = runif();
00166
00167 index = 0;
00168 while ( unif_sample > _valuelist[index] )
00169 {
00170 assert(index <= NumStatesGet());
00171 index++;
00172 }
00173 one_sample.ValueSet(index-1);
00174 return true;
00175 }
00176
00177
00178 bool
00179 DiscreteConditionalPdf::SampleFrom(vector<Sample<int> >& list_samples,
00180 int num_samples, int method,
00181 void * args) const
00182 {
00183 list_samples.resize(num_samples);
00184 return Pdf<int>::SampleFrom(list_samples, num_samples,method,args);
00185 }
00186
00187
00188 }
bfl
Author(s): Klaas Gadeyne, Wim Meeussen, Tinne Delaet and many others. See web page for a full contributor list. ROS package maintained by Wim Meeussen.
autogenerated on Mon Feb 11 2019 03:45:12