Public Types | Public Member Functions | Protected Attributes
Eigen::FullPivHouseholderQR< _MatrixType > Class Template Reference

Householder rank-revealing QR decomposition of a matrix with full pivoting. More...

#include <FullPivHouseholderQR.h>

List of all members.

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
}
typedef
internal::plain_col_type
< MatrixType >::type 
ColVectorType
typedef
internal::plain_diag_type
< MatrixType >::type 
HCoeffsType
typedef MatrixType::Index Index
typedef
internal::plain_col_type
< MatrixType, Index >::type 
IntColVectorType
typedef Matrix< Index,
1, ColsAtCompileTime, RowMajor,
1, MaxColsAtCompileTime
IntRowVectorType
typedef
internal::FullPivHouseholderQRMatrixQReturnType
< MatrixType
MatrixQReturnType
typedef _MatrixType MatrixType
typedef PermutationMatrix
< ColsAtCompileTime,
MaxColsAtCompileTime
PermutationType
typedef MatrixType::RealScalar RealScalar
typedef
internal::plain_row_type
< MatrixType >::type 
RowVectorType
typedef MatrixType::Scalar Scalar

Public Member Functions

MatrixType::RealScalar absDeterminant () const
Index cols () const
const PermutationTypecolsPermutation () const
FullPivHouseholderQRcompute (const MatrixType &matrix)
Index dimensionOfKernel () const
 FullPivHouseholderQR ()
 Default Constructor.
 FullPivHouseholderQR (Index rows, Index cols)
 Default Constructor with memory preallocation.
 FullPivHouseholderQR (const MatrixType &matrix)
const HCoeffsTypehCoeffs () const
const internal::solve_retval
< FullPivHouseholderQR,
typename
MatrixType::IdentityReturnType > 
inverse () const
bool isInjective () const
bool isInvertible () const
bool isSurjective () const
MatrixType::RealScalar logAbsDeterminant () const
MatrixQReturnType matrixQ (void) const
const MatrixTypematrixQR () const
RealScalar maxPivot () const
Index nonzeroPivots () const
Index rank () const
Index rows () const
const IntColVectorTyperowsTranspositions () const
FullPivHouseholderQRsetThreshold (const RealScalar &threshold)
FullPivHouseholderQRsetThreshold (Default_t)
template<typename Rhs >
const internal::solve_retval
< FullPivHouseholderQR, Rhs > 
solve (const MatrixBase< Rhs > &b) const
RealScalar threshold () const

Protected Attributes

PermutationType m_cols_permutation
IntRowVectorType m_cols_transpositions
Index m_det_pq
HCoeffsType m_hCoeffs
bool m_isInitialized
RealScalar m_maxpivot
Index m_nonzero_pivots
RealScalar m_precision
RealScalar m_prescribedThreshold
MatrixType m_qr
IntColVectorType m_rows_transpositions
RowVectorType m_temp
bool m_usePrescribedThreshold

Detailed Description

template<typename _MatrixType>
class Eigen::FullPivHouseholderQR< _MatrixType >

Householder rank-revealing QR decomposition of a matrix with full pivoting.

Parameters:
MatrixTypethe type of the matrix of which we are computing the QR decomposition

This class performs a rank-revealing QR decomposition of a matrix A into matrices P, Q and R such that

\[ \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} \]

by using Householder transformations. Here, P is a permutation matrix, Q a unitary matrix and R an upper triangular matrix.

This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.

See also:
MatrixBase::fullPivHouseholderQr()

Definition at line 49 of file FullPivHouseholderQR.h.


Member Typedef Documentation

template<typename _MatrixType>
typedef internal::plain_col_type<MatrixType>::type Eigen::FullPivHouseholderQR< _MatrixType >::ColVectorType

Definition at line 70 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
typedef internal::plain_diag_type<MatrixType>::type Eigen::FullPivHouseholderQR< _MatrixType >::HCoeffsType

Definition at line 65 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
typedef MatrixType::Index Eigen::FullPivHouseholderQR< _MatrixType >::Index

Definition at line 63 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
typedef internal::plain_col_type<MatrixType, Index>::type Eigen::FullPivHouseholderQR< _MatrixType >::IntColVectorType

Definition at line 68 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> Eigen::FullPivHouseholderQR< _MatrixType >::IntRowVectorType

Definition at line 66 of file FullPivHouseholderQR.h.

Definition at line 64 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
typedef _MatrixType Eigen::FullPivHouseholderQR< _MatrixType >::MatrixType

Definition at line 53 of file FullPivHouseholderQR.h.

Definition at line 67 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
typedef MatrixType::RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::RealScalar

Definition at line 62 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
typedef internal::plain_row_type<MatrixType>::type Eigen::FullPivHouseholderQR< _MatrixType >::RowVectorType

Definition at line 69 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
typedef MatrixType::Scalar Eigen::FullPivHouseholderQR< _MatrixType >::Scalar

Definition at line 61 of file FullPivHouseholderQR.h.


Member Enumeration Documentation

template<typename _MatrixType>
anonymous enum
Enumerator:
RowsAtCompileTime 
ColsAtCompileTime 
Options 
MaxRowsAtCompileTime 
MaxColsAtCompileTime 

Definition at line 54 of file FullPivHouseholderQR.h.


Constructor & Destructor Documentation

template<typename _MatrixType>
Eigen::FullPivHouseholderQR< _MatrixType >::FullPivHouseholderQR ( ) [inline]

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).

Definition at line 77 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
Eigen::FullPivHouseholderQR< _MatrixType >::FullPivHouseholderQR ( Index  rows,
Index  cols 
) [inline]

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also:
FullPivHouseholderQR()

Definition at line 93 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
Eigen::FullPivHouseholderQR< _MatrixType >::FullPivHouseholderQR ( const MatrixType matrix) [inline]

Definition at line 103 of file FullPivHouseholderQR.h.


Member Function Documentation

template<typename MatrixType >
MatrixType::RealScalar Eigen::FullPivHouseholderQR< MatrixType >::absDeterminant ( ) const
Returns:
the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note:
This is only for square matrices.
Warning:
a determinant can be very big or small, so for matrices of large enough dimension, there is a risk of overflow/underflow. One way to work around that is to use logAbsDeterminant() instead.
See also:
logAbsDeterminant(), MatrixBase::determinant()

Definition at line 363 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR< _MatrixType >::cols ( void  ) const [inline]

Definition at line 276 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
const PermutationType& Eigen::FullPivHouseholderQR< _MatrixType >::colsPermutation ( ) const [inline]

Definition at line 155 of file FullPivHouseholderQR.h.

template<typename MatrixType >
FullPivHouseholderQR< MatrixType > & Eigen::FullPivHouseholderQR< MatrixType >::compute ( const MatrixType matrix)

Definition at line 379 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR< _MatrixType >::dimensionOfKernel ( ) const [inline]
Returns:
the dimension of the kernel of the matrix of which *this is the QR decomposition.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 218 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
const HCoeffsType& Eigen::FullPivHouseholderQR< _MatrixType >::hCoeffs ( ) const [inline]

Definition at line 277 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
const internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType> Eigen::FullPivHouseholderQR< _MatrixType >::inverse ( void  ) const [inline]
Returns:
the inverse of the matrix of which *this is the QR decomposition.
Note:
If this matrix is not invertible, the returned matrix has undefined coefficients. Use isInvertible() to first determine whether this matrix is invertible.

Definition at line 268 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR< _MatrixType >::isInjective ( ) const [inline]
Returns:
true if the matrix of which *this is the QR decomposition represents an injective linear map, i.e. has trivial kernel; false otherwise.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 231 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR< _MatrixType >::isInvertible ( ) const [inline]
Returns:
true if the matrix of which *this is the QR decomposition is invertible.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 256 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR< _MatrixType >::isSurjective ( ) const [inline]
Returns:
true if the matrix of which *this is the QR decomposition represents a surjective linear map; false otherwise.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 244 of file FullPivHouseholderQR.h.

template<typename MatrixType >
MatrixType::RealScalar Eigen::FullPivHouseholderQR< MatrixType >::logAbsDeterminant ( ) const
Returns:
the natural log of the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note:
This is only for square matrices.
This method is useful to work around the risk of overflow/underflow that's inherent to determinant computation.
See also:
absDeterminant(), MatrixBase::determinant()

Definition at line 371 of file FullPivHouseholderQR.h.

template<typename MatrixType >
FullPivHouseholderQR< MatrixType >::MatrixQReturnType Eigen::FullPivHouseholderQR< MatrixType >::matrixQ ( void  ) const [inline]
Returns:
Expression object representing the matrix Q

Definition at line 575 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
const MatrixType& Eigen::FullPivHouseholderQR< _MatrixType >::matrixQR ( ) const [inline]
Returns:
a reference to the matrix where the Householder QR decomposition is stored

Definition at line 147 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::maxPivot ( ) const [inline]
Returns:
the absolute value of the biggest pivot, i.e. the biggest diagonal coefficient of U.

Definition at line 346 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR< _MatrixType >::nonzeroPivots ( ) const [inline]
Returns:
the number of nonzero pivots in the QR decomposition. Here nonzero is meant in the exact sense, not in a fuzzy sense. So that notion isn't really intrinsically interesting, but it is still useful when implementing algorithms.
See also:
rank()

Definition at line 337 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR< _MatrixType >::rank ( ) const [inline]
Returns:
the rank of the matrix of which *this is the QR decomposition.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 202 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR< _MatrixType >::rows ( void  ) const [inline]

Definition at line 275 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
const IntColVectorType& Eigen::FullPivHouseholderQR< _MatrixType >::rowsTranspositions ( ) const [inline]

Definition at line 161 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
FullPivHouseholderQR& Eigen::FullPivHouseholderQR< _MatrixType >::setThreshold ( const RealScalar threshold) [inline]

Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. This is not used for the QR decomposition itself.

When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.

Parameters:
thresholdThe new value to use as the threshold.

A pivot will be considered nonzero if its absolute value is strictly greater than $ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert $ where maxpivot is the biggest pivot.

If you want to come back to the default behavior, call setThreshold(Default_t)

Definition at line 296 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
FullPivHouseholderQR& Eigen::FullPivHouseholderQR< _MatrixType >::setThreshold ( Default_t  ) [inline]

Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.

You should pass the special object Eigen::Default as parameter here.

 qr.setThreshold(Eigen::Default); 

See the documentation of setThreshold(const RealScalar&).

Definition at line 311 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
template<typename Rhs >
const internal::solve_retval<FullPivHouseholderQR, Rhs> Eigen::FullPivHouseholderQR< _MatrixType >::solve ( const MatrixBase< Rhs > &  b) const [inline]

This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR decomposition, if any exists.

Parameters:
bthe right-hand-side of the equation to solve.
Returns:
a solution.
Note:
The case where b is a matrix is not yet implemented. Also, this code is space inefficient.

Example:

Output:

Definition at line 135 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::threshold ( ) const [inline]

Returns the threshold that will be used by certain methods such as rank().

See the documentation of setThreshold(const RealScalar&).

Definition at line 321 of file FullPivHouseholderQR.h.


Member Data Documentation

template<typename _MatrixType>
PermutationType Eigen::FullPivHouseholderQR< _MatrixType >::m_cols_permutation [protected]

Definition at line 353 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
IntRowVectorType Eigen::FullPivHouseholderQR< _MatrixType >::m_cols_transpositions [protected]

Definition at line 352 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR< _MatrixType >::m_det_pq [protected]

Definition at line 359 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
HCoeffsType Eigen::FullPivHouseholderQR< _MatrixType >::m_hCoeffs [protected]

Definition at line 350 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR< _MatrixType >::m_isInitialized [protected]

Definition at line 355 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::m_maxpivot [protected]

Definition at line 356 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR< _MatrixType >::m_nonzero_pivots [protected]

Definition at line 357 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::m_precision [protected]

Definition at line 358 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::m_prescribedThreshold [protected]

Definition at line 356 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
MatrixType Eigen::FullPivHouseholderQR< _MatrixType >::m_qr [protected]

Definition at line 349 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
IntColVectorType Eigen::FullPivHouseholderQR< _MatrixType >::m_rows_transpositions [protected]

Definition at line 351 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
RowVectorType Eigen::FullPivHouseholderQR< _MatrixType >::m_temp [protected]

Definition at line 354 of file FullPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR< _MatrixType >::m_usePrescribedThreshold [protected]

Definition at line 355 of file FullPivHouseholderQR.h.


The documentation for this class was generated from the following file:


win_eigen
Author(s): Daniel Stonier
autogenerated on Wed Sep 16 2015 07:12:50