Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 #include <pcl/common/eigen.h>
00039
00041 inline void
00042 pcl::TransformationFromCorrespondences::reset ()
00043 {
00044 no_of_samples_ = 0;
00045 accumulated_weight_ = 0.0;
00046 mean1_.fill(0);
00047 mean2_.fill(0);
00048 covariance_.fill(0);
00049 }
00050
00052 inline void
00053 pcl::TransformationFromCorrespondences::add (const Eigen::Vector3f& point, const Eigen::Vector3f& corresponding_point,
00054 float weight)
00055 {
00056 if (weight==0.0f)
00057 return;
00058
00059 ++no_of_samples_;
00060 accumulated_weight_ += weight;
00061 float alpha = weight/accumulated_weight_;
00062
00063 Eigen::Vector3f diff1 = point - mean1_, diff2 = corresponding_point - mean2_;
00064 covariance_ = (1.0f-alpha)*(covariance_ + alpha * (diff2 * diff1.transpose()));
00065
00066 mean1_ += alpha*(diff1);
00067 mean2_ += alpha*(diff2);
00068 }
00069
00071 inline Eigen::Affine3f
00072 pcl::TransformationFromCorrespondences::getTransformation ()
00073 {
00074
00075 Eigen::JacobiSVD<Eigen::Matrix<float, 3, 3> > svd (covariance_, Eigen::ComputeFullU | Eigen::ComputeFullV);
00076 const Eigen::Matrix<float, 3, 3>& u = svd.matrixU(),
00077 & v = svd.matrixV();
00078 Eigen::Matrix<float, 3, 3> s;
00079 s.setIdentity();
00080 if (u.determinant()*v.determinant() < 0.0f)
00081 s(2,2) = -1.0f;
00082
00083 Eigen::Matrix<float, 3, 3> r = u * s * v.transpose();
00084 Eigen::Vector3f t = mean2_ - r*mean1_;
00085
00086 Eigen::Affine3f ret;
00087 ret(0,0)=r(0,0); ret(0,1)=r(0,1); ret(0,2)=r(0,2); ret(0,3)=t(0);
00088 ret(1,0)=r(1,0); ret(1,1)=r(1,1); ret(1,2)=r(1,2); ret(1,3)=t(1);
00089 ret(2,0)=r(2,0); ret(2,1)=r(2,1); ret(2,2)=r(2,2); ret(2,3)=t(2);
00090 ret(3,0)=0.0f; ret(3,1)=0.0f; ret(3,2)=0.0f; ret(3,3)=1.0f;
00091
00092 return (ret);
00093 }