search.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2012-, Open Perception, Inc.
00006  *
00007  *  All rights reserved.
00008  *
00009  *  Redistribution and use in source and binary forms, with or without
00010  *  modification, are permitted provided that the following conditions
00011  *  are met:
00012  *
00013  *   * Redistributions of source code must retain the above copyright
00014  *     notice, this list of conditions and the following disclaimer.
00015  *   * Redistributions in binary form must reproduce the above
00016  *     copyright notice, this list of conditions and the following
00017  *     disclaimer in the documentation and/or other materials provided
00018  *     with the distribution.
00019  *   * Neither the name of the copyright holder(s) nor the names of its
00020  *     contributors may be used to endorse or promote products derived
00021  *     from this software without specific prior written permission.
00022  *
00023  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  *  POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  */
00037 
00038 #ifndef PCL_SEARCH_SEARCH_IMPL_HPP_
00039 #define PCL_SEARCH_SEARCH_IMPL_HPP_
00040 
00041 #include <pcl/search/search.h>
00042 
00044 template <typename PointT>
00045 pcl::search::Search<PointT>::Search (const std::string& name, bool sorted)
00046   : input_ () 
00047   , indices_ ()
00048   , sorted_results_ (sorted)
00049   , name_ (name)
00050 {
00051 }
00052 
00054 template <typename PointT> const std::string& 
00055 pcl::search::Search<PointT>::getName () const
00056 {
00057   return (name_);
00058 }
00059 
00061 template <typename PointT> void
00062 pcl::search::Search<PointT>::setSortedResults (bool sorted)
00063 {
00064   sorted_results_ = sorted;
00065 }
00066 
00068 template <typename PointT> bool
00069 pcl::search::Search<PointT>::getSortedResults ()
00070 {
00071   return (sorted_results_);
00072 }
00073  
00075 template <typename PointT> void
00076 pcl::search::Search<PointT>::setInputCloud (
00077     const PointCloudConstPtr& cloud, const IndicesConstPtr &indices)
00078 {
00079   input_ = cloud;
00080   indices_ = indices;
00081 }
00082 
00083 
00085 template <typename PointT> int
00086 pcl::search::Search<PointT>::nearestKSearch (
00087     const PointCloud &cloud, int index, int k,
00088     std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
00089 {
00090   assert (index >= 0 && index < static_cast<int> (cloud.points.size ()) && "Out-of-bounds error in nearestKSearch!");
00091   return (nearestKSearch (cloud.points[index], k, k_indices, k_sqr_distances));
00092 }
00093 
00095 template <typename PointT> int
00096 pcl::search::Search<PointT>::nearestKSearch (
00097     int index, int k, 
00098     std::vector<int> &k_indices, 
00099     std::vector<float> &k_sqr_distances) const
00100 {
00101   if (indices_ == NULL)
00102   {
00103     assert (index >= 0 && index < static_cast<int> (input_->points.size ()) && "Out-of-bounds error in nearestKSearch!");
00104     return (nearestKSearch (input_->points[index], k, k_indices, k_sqr_distances));
00105   }
00106   else
00107   {
00108     assert (index >= 0 && index < static_cast<int> (indices_->size ()) && "Out-of-bounds error in nearestKSearch!");
00109     if (index >= static_cast<int> (indices_->size ()) || index < 0)
00110       return (0);
00111     return (nearestKSearch (input_->points[(*indices_)[index]], k, k_indices, k_sqr_distances));
00112   }
00113 }
00114  
00116 template <typename PointT> void
00117 pcl::search::Search<PointT>::nearestKSearch (
00118     const PointCloud& cloud, const std::vector<int>& indices, 
00119     int k, std::vector< std::vector<int> >& k_indices,
00120     std::vector< std::vector<float> >& k_sqr_distances) const
00121 {
00122   if (indices.empty ())
00123   {
00124     k_indices.resize (cloud.size ());
00125     k_sqr_distances.resize (cloud.size ());
00126     for (size_t i = 0; i < cloud.size (); i++)
00127       nearestKSearch (cloud, static_cast<int> (i), k, k_indices[i], k_sqr_distances[i]);
00128   }
00129   else
00130   {
00131     k_indices.resize (indices.size ());
00132     k_sqr_distances.resize (indices.size ());
00133     for (size_t i = 0; i < indices.size (); i++)
00134       nearestKSearch (cloud, indices[i], k, k_indices[i], k_sqr_distances[i]);
00135   }
00136 }
00137 
00139 template <typename PointT> int
00140 pcl::search::Search<PointT>::radiusSearch (
00141     const PointCloud &cloud, int index, double radius,
00142     std::vector<int> &k_indices, std::vector<float> &k_sqr_distances,
00143     unsigned int max_nn) const
00144 {
00145   assert (index >= 0 && index < static_cast<int> (cloud.points.size ()) && "Out-of-bounds error in radiusSearch!");
00146   return (radiusSearch(cloud.points[index], radius, k_indices, k_sqr_distances, max_nn));
00147 }
00148 
00150 template <typename PointT> int
00151 pcl::search::Search<PointT>::radiusSearch (
00152     int index, double radius, std::vector<int> &k_indices,
00153     std::vector<float> &k_sqr_distances, unsigned int max_nn ) const
00154 {
00155   if (indices_ == NULL)
00156   {
00157     assert (index >= 0 && index < static_cast<int> (input_->points.size ()) && "Out-of-bounds error in radiusSearch!");
00158     return (radiusSearch (input_->points[index], radius, k_indices, k_sqr_distances, max_nn));
00159   }
00160   else
00161   {
00162     assert (index >= 0 && index < static_cast<int> (indices_->size ()) && "Out-of-bounds error in radiusSearch!");
00163     return (radiusSearch (input_->points[(*indices_)[index]], radius, k_indices, k_sqr_distances, max_nn));
00164   }
00165 }
00166 
00168 template <typename PointT> void
00169 pcl::search::Search<PointT>::radiusSearch (
00170     const PointCloud& cloud,
00171     const std::vector<int>& indices,
00172     double radius,
00173     std::vector< std::vector<int> >& k_indices,
00174     std::vector< std::vector<float> > &k_sqr_distances,
00175     unsigned int max_nn) const
00176 {
00177   if (indices.empty ())
00178   {
00179     k_indices.resize (cloud.size ());
00180     k_sqr_distances.resize (cloud.size ());
00181     for (size_t i = 0; i < cloud.size (); i++)
00182       radiusSearch (cloud, static_cast<int> (i), radius,k_indices[i], k_sqr_distances[i], max_nn);
00183   }
00184   else
00185   {
00186     k_indices.resize (indices.size ());
00187     k_sqr_distances.resize (indices.size ());
00188     for (size_t i = 0; i < indices.size (); i++)
00189       radiusSearch (cloud,indices[i],radius,k_indices[i],k_sqr_distances[i], max_nn);
00190   }
00191 }
00192 
00194 template <typename PointT> void
00195 pcl::search::Search<PointT>::sortResults (
00196     std::vector<int>& indices, std::vector<float>& distances) const
00197 {
00198   std::vector<int> order (indices.size ());
00199   for (size_t idx = 0; idx < order.size (); ++idx)
00200     order [idx] = static_cast<int> (idx);
00201 
00202   Compare compare (distances);
00203   sort (order.begin (), order.end (), compare);
00204 
00205   std::vector<int> sorted (indices.size ());
00206   for (size_t idx = 0; idx < order.size (); ++idx)
00207     sorted [idx] = indices[order [idx]];
00208 
00209   indices = sorted;
00210 
00211   // sort  the according distances.
00212   sort (distances.begin (), distances.end ());
00213 }
00214 
00215 #define PCL_INSTANTIATE_Search(T) template class PCL_EXPORTS pcl::search::Search<T>;
00216 
00217 #endif  //#ifndef _PCL_SEARCH_SEARCH_IMPL_HPP_
00218 
00219 


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:33:02