rmsac.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2009, Willow Garage, Inc.
00006  *  Copyright (c) 2012-, Open Perception, Inc.
00007  *
00008  *  All rights reserved.
00009  *
00010  *  Redistribution and use in source and binary forms, with or without
00011  *  modification, are permitted provided that the following conditions
00012  *  are met:
00013  *
00014  *   * Redistributions of source code must retain the above copyright
00015  *     notice, this list of conditions and the following disclaimer.
00016  *   * Redistributions in binary form must reproduce the above
00017  *     copyright notice, this list of conditions and the following
00018  *     disclaimer in the documentation and/or other materials provided
00019  *     with the distribution.
00020  *   * Neither the name of the copyright holder(s) nor the names of its
00021  *     contributors may be used to endorse or promote products derived
00022  *     from this software without specific prior written permission.
00023  *
00024  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00025  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00026  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00027  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00028  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00029  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00030  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00031  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00032  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00033  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00034  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00035  *  POSSIBILITY OF SUCH DAMAGE.
00036  *
00037  * $Id$
00038  *
00039  */
00040 
00041 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_RMSAC_H_
00042 #define PCL_SAMPLE_CONSENSUS_IMPL_RMSAC_H_
00043 
00044 #include <pcl/sample_consensus/rmsac.h>
00045 
00047 template <typename PointT> bool
00048 pcl::RandomizedMEstimatorSampleConsensus<PointT>::computeModel (int debug_verbosity_level)
00049 {
00050   // Warn and exit if no threshold was set
00051   if (threshold_ == std::numeric_limits<double>::max())
00052   {
00053     PCL_ERROR ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] No threshold set!\n");
00054     return (false);
00055   }
00056 
00057   iterations_ = 0;
00058   double d_best_penalty = std::numeric_limits<double>::max();
00059   double k = 1.0;
00060 
00061   std::vector<int> best_model;
00062   std::vector<int> selection;
00063   Eigen::VectorXf model_coefficients;
00064   std::vector<double> distances;
00065   std::set<int> indices_subset;
00066 
00067   int n_inliers_count = 0;
00068   unsigned skipped_count = 0;
00069   // supress infinite loops by just allowing 10 x maximum allowed iterations for invalid model parameters!
00070   const unsigned max_skip = max_iterations_ * 10;
00071   
00072   // Number of samples to try randomly
00073   size_t fraction_nr_points = pcl_lrint (static_cast<double>(sac_model_->getIndices ()->size ()) * fraction_nr_pretest_ / 100.0);
00074 
00075   // Iterate
00076   while (iterations_ < k && skipped_count < max_skip)
00077   {
00078     // Get X samples which satisfy the model criteria
00079     sac_model_->getSamples (iterations_, selection);
00080 
00081     if (selection.empty ()) break;
00082 
00083     // Search for inliers in the point cloud for the current plane model M
00084     if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
00085     {
00086       //iterations_++;
00087       ++ skipped_count;
00088       continue;
00089     }
00090 
00091     // RMSAC addon: verify a random fraction of the data
00092     // Get X random samples which satisfy the model criterion
00093     this->getRandomSamples (sac_model_->getIndices (), fraction_nr_points, indices_subset);
00094 
00095     if (!sac_model_->doSamplesVerifyModel (indices_subset, model_coefficients, threshold_))
00096     {
00097       // Unfortunately we cannot "continue" after the first iteration, because k might not be set, while iterations gets incremented
00098       if (k != 1.0)
00099       {
00100         ++iterations_;
00101         continue;
00102       }
00103     }
00104 
00105     double d_cur_penalty = 0;
00106     // Iterate through the 3d points and calculate the distances from them to the model
00107     sac_model_->getDistancesToModel (model_coefficients, distances);
00108 
00109     if (distances.empty () && k > 1.0)
00110       continue;
00111 
00112     for (size_t i = 0; i < distances.size (); ++i)
00113       d_cur_penalty += (std::min) (distances[i], threshold_);
00114 
00115     // Better match ?
00116     if (d_cur_penalty < d_best_penalty)
00117     {
00118       d_best_penalty = d_cur_penalty;
00119 
00120       // Save the current model/coefficients selection as being the best so far
00121       model_              = selection;
00122       model_coefficients_ = model_coefficients;
00123 
00124       n_inliers_count = 0;
00125       // Need to compute the number of inliers for this model to adapt k
00126       for (size_t i = 0; i < distances.size (); ++i)
00127         if (distances[i] <= threshold_)
00128           n_inliers_count++;
00129 
00130       // Compute the k parameter (k=log(z)/log(1-w^n))
00131       double w = static_cast<double> (n_inliers_count) / static_cast<double>(sac_model_->getIndices ()->size ());
00132       double p_no_outliers = 1 - pow (w, static_cast<double> (selection.size ()));
00133       p_no_outliers = (std::max) (std::numeric_limits<double>::epsilon (), p_no_outliers);       // Avoid division by -Inf
00134       p_no_outliers = (std::min) (1 - std::numeric_limits<double>::epsilon (), p_no_outliers);   // Avoid division by 0.
00135       k = log (1 - probability_) / log (p_no_outliers);
00136     }
00137 
00138     ++iterations_;
00139     if (debug_verbosity_level > 1)
00140       PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Trial %d out of %d. Best penalty is %f.\n", iterations_, static_cast<int> (ceil (k)), d_best_penalty);
00141     if (iterations_ > max_iterations_)
00142     {
00143       if (debug_verbosity_level > 0)
00144         PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] MSAC reached the maximum number of trials.\n");
00145       break;
00146     }
00147   }
00148 
00149   if (model_.empty ())
00150   {
00151     if (debug_verbosity_level > 0)
00152       PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Unable to find a solution!\n");
00153     return (false);
00154   }
00155 
00156   // Iterate through the 3d points and calculate the distances from them to the model again
00157   sac_model_->getDistancesToModel (model_coefficients_, distances);
00158   std::vector<int> &indices = *sac_model_->getIndices ();
00159   if (distances.size () != indices.size ())
00160   {
00161     PCL_ERROR ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Estimated distances (%zu) differs than the normal of indices (%zu).\n", distances.size (), indices.size ());
00162     return (false);
00163   }
00164 
00165   inliers_.resize (distances.size ());
00166   // Get the inliers for the best model found
00167   n_inliers_count = 0;
00168   for (size_t i = 0; i < distances.size (); ++i)
00169     if (distances[i] <= threshold_)
00170       inliers_[n_inliers_count++] = indices[i];
00171 
00172   // Resize the inliers vector
00173   inliers_.resize (n_inliers_count);
00174 
00175   if (debug_verbosity_level > 0)
00176     PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Model: %zu size, %d inliers.\n", model_.size (), n_inliers_count);
00177 
00178   return (true);
00179 }
00180 
00181 #define PCL_INSTANTIATE_RandomizedMEstimatorSampleConsensus(T) template class PCL_EXPORTS pcl::RandomizedMEstimatorSampleConsensus<T>;
00182 
00183 #endif    // PCL_SAMPLE_CONSENSUS_IMPL_RMSAC_H_
00184 


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:32:10