example_fast_point_feature_histograms.cpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  * Point Cloud Library (PCL) - www.pointclouds.org
00005  * Copyright (c) 2009-2011, Willow Garage, Inc.
00006  *
00007  * All rights reserved.
00008  *
00009  * Redistribution and use in source and binary forms, with or without
00010  * modification, are permitted provided that the following conditions
00011  * are met:
00012  *
00013  * * Redistributions of source code must retain the above copyright
00014  *   notice, this list of conditions and the following disclaimer.
00015  * * Redistributions in binary form must reproduce the above
00016  *   copyright notice, this list of conditions and the following
00017  *   disclaimer in the documentation and/or other materials provided
00018  *   with the distribution.
00019  * * Neither the name of Willow Garage, Inc. nor the names of its
00020  *   contributors may be used to endorse or promote products derived
00021  *   from this software without specific prior written permission.
00022  *
00023  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  * POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  * $Id$
00037  *
00038  */
00039 
00040 
00041 #include <iostream>
00042 #include <vector>
00043 
00044 #include <pcl/io/pcd_io.h>
00045 #include <pcl/point_types.h>
00046 #include <pcl/features/fpfh.h>
00047 #include <pcl/features/normal_3d.h>
00048 
00049 int
00050 main (int argc, char** argv)
00051 {
00052   if (argc < 2)
00053   {
00054     throw std::runtime_error ("Required arguments: filename.pcd");
00055   }
00056 
00057   std::string fileName = argv[1];
00058   std::cout << "Reading " << fileName << std::endl;
00059 
00060   pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
00061 
00062   if (pcl::io::loadPCDFile<pcl::PointXYZ> (fileName, *cloud) == -1) // load the file
00063   {
00064     PCL_ERROR ("Couldn't read file");
00065     return (-1);
00066   }
00067 
00068   std::cout << "Loaded " << cloud->points.size () << " points." << std::endl;
00069 
00070   // Compute the normals
00071   pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimation;
00072   normal_estimation.setInputCloud (cloud);
00073 
00074   pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
00075   normal_estimation.setSearchMethod (tree);
00076 
00077   pcl::PointCloud<pcl::Normal>::Ptr cloud_with_normals (new pcl::PointCloud<pcl::Normal>);
00078 
00079   normal_estimation.setRadiusSearch (0.03);
00080 
00081   normal_estimation.compute (*cloud_with_normals);
00082 
00083   // Setup the feature computation
00084 
00085   pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh_estimation;
00086   // Provide the original point cloud (without normals)
00087   fpfh_estimation.setInputCloud (cloud);
00088   // Provide the point cloud with normals
00089   fpfh_estimation.setInputNormals (cloud_with_normals);
00090 
00091   // fpfhEstimation.setInputWithNormals(cloud, cloudWithNormals); PFHEstimation does not have this function
00092   // Use the same KdTree from the normal estimation
00093   fpfh_estimation.setSearchMethod (tree);
00094 
00095   pcl::PointCloud<pcl::FPFHSignature33>::Ptr pfh_features (new pcl::PointCloud<pcl::FPFHSignature33>);
00096 
00097   fpfh_estimation.setRadiusSearch (0.2);
00098 
00099   // Actually compute the spin images
00100   fpfh_estimation.compute (*pfh_features);
00101 
00102   std::cout << "output points.size (): " << pfh_features->points.size () << std::endl;
00103 
00104   // Display and retrieve the shape context descriptor vector for the 0th point.
00105   pcl::FPFHSignature33 descriptor = pfh_features->points[0];
00106   std::cout << descriptor << std::endl;
00107 
00108   return 0;
00109 }


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:23:35