#include <rallNd.h>
Public Member Functions | |
RallNd () | |
RallNd (const Rall1d< RallNd< N-1 >, RallNd< N-1 >, double > &arg) | |
RallNd (double value, double d[]) | |
RallNd () | |
RallNd (const Rall2d< RallNd< N-2 >, RallNd< N-2 >, double > &arg) | |
RallNd (double value, double d[]) |
The Rall1d class allows for a 24-line implementation of rall numbers generalized to the Nth derivative ! The efficiency is not very good for high derivatives. This could be improved by also using Rall2d
template <int n>=""> class RallNd : public Rall1d< RallNd<N-1>, RallNd<N-1>, double > { public: RallNd() {} RallNd(const Rall1d< RallNd<N-1>, RallNd<N-1>,double>& arg) : Rall1d< RallNd<N-1>, RallNd<N-1>,double>(arg) {} RallNd(double value,double d[]) { this->t = RallNd<N-1>(value,d); this->grad = RallNd<N-1>(d[0],&d[1]); } };
template <> class RallNd<1> : public Rall1d<double> { public: RallNd() {} RallNd(const Rall1d<double>& arg) : Rall1d<double,double,double>(arg) {} RallNd(double value,double d[]) { t = value; grad = d[0]; } }; to be checked.. Als je tot 3de orde een efficiente berekening kan doen, dan kan je tot een willekeurige orde alles efficient berekenen 0 1 2 3 ==> 1 2 3 4 ==> 3 4 5 6 4 5 6 7
de aangeduide berekeningen zijn niet noodzakelijk, en er is dan niets verniet berekend in de recursieve implementatie. of met 2de orde over 1ste order : kan ook efficient : 0 1 ==>1 2 2 3
Definition at line 56 of file rallnumbertest.cpp.
RallNd< N >::RallNd | ( | const Rall1d< RallNd< N-1 >, RallNd< N-1 >, double > & | arg | ) | [inline] |
Definition at line 57 of file rallnumbertest.cpp.
Definition at line 59 of file rallnumbertest.cpp.