00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033 #undef HAVE_FLANN
00034
00035 #include "nabo/nabo.h"
00036 #include "experimental/nabo_experimental.h"
00037 #include "helpers.h"
00038 #ifdef HAVE_ANN
00039 #include "ANN.h"
00040 #endif // HAVE_ANN
00041 #ifdef HAVE_FLANN
00042 #include "flann/flann.hpp"
00043 #endif // HAVE_FLANN
00044 #include <iostream>
00045 #include <fstream>
00046 #include <stdexcept>
00047
00048 using namespace std;
00049 using namespace Nabo;
00050
00051 typedef Nabo::NearestNeighbourSearch<double>::Matrix MatrixD;
00052 typedef Nabo::NearestNeighbourSearch<double>::Vector VectorD;
00053 typedef Nabo::NearestNeighbourSearch<double>::Index IndexD;
00054 typedef Nabo::NearestNeighbourSearch<double>::IndexVector IndexVectorD;
00055 typedef Nabo::NearestNeighbourSearch<float>::Matrix MatrixF;
00056 typedef Nabo::NearestNeighbourSearch<float>::Vector VectorF;
00057 typedef Nabo::NearestNeighbourSearch<float>::Index IndexF;
00058 typedef Nabo::NearestNeighbourSearch<float>::IndexVector IndexVectorF;
00059 typedef Nabo::BruteForceSearch<double> BFSD;
00060 typedef Nabo::BruteForceSearch<float> BFSF;
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084 struct BenchResult
00085 {
00086 double creationDuration;
00087 double executionDuration;
00088 double visitCount;
00089 double totalCount;
00090
00091 BenchResult():
00092 creationDuration(0),
00093 executionDuration(0),
00094 visitCount(0),
00095 totalCount(0)
00096 {}
00097
00098 void operator +=(const BenchResult& that)
00099 {
00100 creationDuration += that.creationDuration;
00101 executionDuration += that.executionDuration;
00102 visitCount += that.visitCount;
00103 totalCount += that.totalCount;
00104 }
00105
00106 void operator /=(const double factor)
00107 {
00108 creationDuration /= factor;
00109 executionDuration /= factor;
00110 visitCount /= factor;
00111 totalCount /= factor;
00112 }
00113 };
00114 typedef vector<BenchResult> BenchResults;
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134 template<typename T>
00135 BenchResult doBenchType(const typename NearestNeighbourSearch<T>::SearchType type,
00136 const unsigned creationOptionFlags,
00137 const typename NearestNeighbourSearch<T>::Matrix& d,
00138 const typename NearestNeighbourSearch<T>::Matrix& q,
00139 const int K,
00140 const int ,
00141 const int searchCount)
00142 {
00143 typedef NearestNeighbourSearch<T> nnsT;
00144 typedef typename NearestNeighbourSearch<T>::Matrix Matrix;
00145 typedef typename NearestNeighbourSearch<T>::IndexMatrix IndexMatrix;
00146
00147 BenchResult result;
00148 boost::timer t;
00149 nnsT* nns(nnsT::create(d, d.rows(), type, creationOptionFlags));
00150 result.creationDuration = t.elapsed();
00151
00152 for (int s = 0; s < searchCount; ++s)
00153 {
00154 t.restart();
00155 IndexMatrix indices(K, q.cols());
00156 Matrix dists2(K, q.cols());
00157 const unsigned long visitCount = nns->knn(q, indices, dists2, K, 0, 0);
00158 result.executionDuration += t.elapsed();
00159 result.visitCount += double(visitCount);
00160 }
00161 result.executionDuration /= double(searchCount);
00162 result.visitCount /= double(searchCount);
00163
00164 delete nns;
00165
00166 result.totalCount = double(q.cols()) * double(d.cols());
00167
00168 return result;
00169 }
00170
00171 #ifdef HAVE_ANN
00172
00173 BenchResult doBenchANNStack(const MatrixD& d, const MatrixD& q, const int K, const int itCount, const int searchCount)
00174 {
00175 BenchResult result;
00176 boost::timer t;
00177 const int ptCount(d.cols());
00178 const double **pa = new const double *[d.cols()];
00179 for (int i = 0; i < ptCount; ++i)
00180 pa[i] = &d.coeff(0, i);
00181 ANNkd_tree* ann_kdt = new ANNkd_tree(const_cast<double**>(pa), ptCount, d.rows(), 8);
00182 result.creationDuration = t.elapsed();
00183
00184 for (int s = 0; s < searchCount; ++s)
00185 {
00186 t.restart();
00187 ANNidx nnIdx[K];
00188 ANNdist dists[K];
00189 for (int i = 0; i < itCount; ++i)
00190 {
00191 const VectorD& tq(q.col(i));
00192 ANNpoint queryPt(const_cast<double*>(&tq.coeff(0)));
00193 ann_kdt->annkSearch(
00194 queryPt,
00195 K,
00196 nnIdx,
00197 dists,
00198 0);
00199 }
00200 result.executionDuration += t.elapsed();
00201 }
00202 result.executionDuration /= double(searchCount);
00203
00204 return result;
00205 }
00206
00207 BenchResult doBenchANNPriority(const MatrixD& d, const MatrixD& q, const int K, const int itCount, const int searchCount)
00208 {
00209 BenchResult result;
00210 boost::timer t;
00211 const int ptCount(d.cols());
00212 const double **pa = new const double *[d.cols()];
00213 for (int i = 0; i < ptCount; ++i)
00214 pa[i] = &d.coeff(0, i);
00215 ANNkd_tree* ann_kdt = new ANNkd_tree(const_cast<double**>(pa), ptCount, d.rows(), 8);
00216 result.creationDuration = t.elapsed();
00217
00218 for (int s = 0; s < searchCount; ++s)
00219 {
00220 t.restart();
00221 ANNidx nnIdx[K];
00222 ANNdist dists[K];
00223 for (int i = 0; i < itCount; ++i)
00224 {
00225 const VectorD& tq(q.col(i));
00226 ANNpoint queryPt(const_cast<double*>(&tq.coeff(0)));
00227 ann_kdt->annkPriSearch(
00228 queryPt,
00229 K,
00230 nnIdx,
00231 dists,
00232 0);
00233 }
00234 result.executionDuration += t.elapsed();
00235 }
00236 result.executionDuration /= double(searchCount);
00237
00238 return result;
00239 }
00240
00241 #endif // HAVE_ANN
00242
00243 #ifdef HAVE_FLANN
00244
00245 template<typename T>
00246 BenchResult doBenchFLANN(const Matrix& d, const Matrix& q, const Index K, const int itCount)
00247 {
00248 BenchResult result;
00249 const int dimCount(d.rows());
00250 const int dPtCount(d.cols());
00251 const int qPtCount(itCount);
00252
00253 flann::Matrix<T> dataset(new T[dPtCount*dimCount], dPtCount, dimCount);
00254 for (int point = 0; point < dPtCount; ++point)
00255 for (int dim = 0; dim < dimCount; ++dim)
00256 dataset[point][dim] = d(dim, point);
00257 flann::Matrix<T> query(new T[qPtCount*dimCount], qPtCount, dimCount);
00258 for (int point = 0; point < qPtCount; ++point)
00259 for (int dim = 0; dim < dimCount; ++dim)
00260 query[point][dim] = q(dim, point);
00261
00262 flann::Matrix<int> indices(new int[query.rows*K], query.rows, K);
00263 flann::Matrix<float> dists(new float[query.rows*K], query.rows, K);
00264
00265
00266 boost::timer t;
00267 flann::Index<T> index(dataset, flann::KDTreeIndexParams(4) );
00268 index.buildIndex();
00269 result.creationDuration = t.elapsed();
00270
00271 t.restart();
00272
00273 index.knnSearch(query, indices, dists, int(K), flann::SearchParams(128));
00274 result.executionDuration = t.elapsed();
00275
00276 dataset.free();
00277 query.free();
00278 indices.free();
00279 dists.free();
00280
00281 return result;
00282 }
00283
00284 #endif // HAVE_FLANN
00285
00286
00287 int main(int argc, char* argv[])
00288 {
00289 if (argc != 6)
00290 {
00291 cerr << "Usage " << argv[0] << " DATA K METHOD RUN_COUNT SEARCH_COUNT" << endl;
00292 return 1;
00293 }
00294
00295 const MatrixD dD(load<double>(argv[1]));
00296 const MatrixF dF(load<float>(argv[1]));
00297 const int K(atoi(argv[2]));
00298 const int method(atoi(argv[3]));
00299 const int itCount(method >= 0 ? method : dD.cols() * 2);
00300 const int runCount(atoi(argv[4]));
00301 const int searchCount(atoi(argv[5]));
00302
00303
00304 if (K >= dD.cols())
00305 {
00306 cerr << "Requested more nearest neighbour than points in the data set" << endl;
00307 return 2;
00308 }
00309
00310
00311 MatrixD qD(createQuery<double>(dD, itCount, method));
00312 MatrixF qF(createQuery<float>(dF, itCount, method));
00313
00314 const char* benchLabels[] =
00315 {
00316
00317
00318
00319
00320
00321
00322 "Nabo, double, unbalanced, stack, pt in leaves only, implicit bounds, ANN_KD_SL_MIDPT, brute-force vector heap, opt",
00323 "Nabo, double, unbalanced, stack, pt in leaves only, implicit bounds, ANN_KD_SL_MIDPT, STL heap, opt",
00324 "Nabo, float, unbalanced, stack, pt in leaves only, implicit bounds, ANN_KD_SL_MIDPT, brute-force vector heap, opt",
00325 "Nabo, float, unbalanced, stack, pt in leaves only, implicit bounds, ANN_KD_SL_MIDPT, STL heap, opt",
00326 "Nabo, float, unbalanced, stack, pt in leaves only, implicit bounds, ANN_KD_SL_MIDPT, STL heap, opt, stats",
00327 #ifdef HAVE_OPENCL
00328 "Nabo, float, OpenCL, GPU, balanced, points in nodes, stack, implicit bounds, balance aspect ratio, stats",
00329 "Nabo, float, OpenCL, GPU, balanced, points in leaves, stack, implicit bounds, balance aspect ratio, stats",
00330
00331 #endif // HAVE_OPENCL
00332
00333 #ifdef HAVE_ANN
00334 "ANN stack, double",
00335
00336 #endif // HAVE_ANN
00337 #ifdef HAVE_FLANN
00338 "FLANN, double",
00339 "FLANN, float",
00340 #endif // HAVE_FLANN
00341 };
00342
00343
00344 size_t benchCount(sizeof(benchLabels) / sizeof(const char *));
00345 cout << "Doing " << benchCount << " different benches " << runCount << " times, with " << searchCount << " query per run" << endl;
00346 BenchResults results(benchCount);
00347 for (int run = 0; run < runCount; ++run)
00348 {
00349 size_t i = 0;
00350
00351
00352
00353
00354
00355
00356 results.at(i++) += doBenchType<double>(NNSearchD::KDTREE_LINEAR_HEAP, 0, dD, qD, K, itCount, searchCount);
00357 results.at(i++) += doBenchType<double>(NNSearchD::KDTREE_TREE_HEAP, 0, dD, qD, K, itCount, searchCount);
00358 results.at(i++) += doBenchType<float>(NNSearchF::KDTREE_LINEAR_HEAP, 0, dF, qF, K, itCount, searchCount);
00359 results.at(i++) += doBenchType<float>(NNSearchF::KDTREE_TREE_HEAP, 0, dF, qF, K, itCount, searchCount);
00360 results.at(i++) += doBenchType<float>(NNSearchF::KDTREE_TREE_HEAP, NNSearchF::TOUCH_STATISTICS, dF, qF, K, itCount, searchCount);
00361 #ifdef HAVE_OPENCL
00362 results.at(i++) += doBenchType<float>(NNSearchF::KDTREE_CL_PT_IN_NODES, NNSearchF::TOUCH_STATISTICS, dF, qF, K, itCount, searchCount);
00363 results.at(i++) += doBenchType<float>(NNSearchF::KDTREE_CL_PT_IN_LEAVES, NNSearchF::TOUCH_STATISTICS, dF, qF, K, itCount, searchCount);
00364
00365 #endif // HAVE_OPENCL
00366 #ifdef HAVE_ANN
00367 results.at(i++) += doBenchANNStack(dD, qD, K, itCount, searchCount);
00368
00369 #endif // HAVE_ANN
00370 #ifdef HAVE_FLANN
00371 results.at(i++) += doBenchFLANN<double>(dD, qD, K, itCount, searchCount);
00372 results.at(i++) += doBenchFLANN<float>(dF, qF, K, itCount, searchCount);
00373 #endif // HAVE_FLANN
00374 }
00375
00376
00377 cout << "Showing average over " << runCount << " runs\n\n";
00378 for (size_t i = 0; i < benchCount; ++i)
00379 {
00380 results[i] /= double(runCount);
00381 cout << "Method " << benchLabels[i] << ":\n";
00382 cout << " creation duration: " << results[i].creationDuration << "\n";
00383 cout << " execution duration: " << results[i].executionDuration << "\n";
00384 if (results[i].totalCount != 0)
00385 {
00386 cout << " visit count: " << results[i].visitCount << "\n";
00387 cout << " total count: " << results[i].totalCount << "\n";
00388 cout << " precentage visit: " << (results[i].visitCount * 100.) / results[i].totalCount << "\n";
00389 }
00390 else
00391 cout << " no stats for visits\n";
00392 cout << endl;
00393 }
00394
00395 return 0;
00396 }